
 
 

 

Universidade de Aveiro 

Ano  2018 

Departamento de Biologia 

INÊS ALVES DOS 
SANTOS TEIXEIRA 
GOMES 
 

CONECTIVIDADE E AVALIAÇÃO BIOLÓGICA; 

FERRAMENTAS PARA AVALIAR A COERÊNCIA 

ECOLÓGICA DE REDES DE ÁREAS MARINHAS 

PROTEGIDAS 

 

 

CONNECTIVITY AND BIOLOGICAL VALUATION; 

TOOLS TO ASSESS THE ECOLOGICAL 

COHERENCE OF NETWORKS OF MARINE 

PROTECTED AREAS 

 
 

  



 
 

  



 
 

 

 Universidade de Aveiro 

Ano  2018 

Departamento de Biologia 

 
 
 
 
 
INÊS ALVES DOS 
SANTOS TEIXEIRA 
GOMES 
 
 

 

 

 

CONECTIVIDADE E AVALIAÇÃO BIOLÓGICA; 

FERRAMENTAS PARA AVALIAR A 

COERÊNCIA ECOLÓGICA DE REDES DE 

ÁREAS MARINHAS PROTEGIDAS 

 

 

CONNECTIVITY AND BIOLOGICAL 

VALUATION; TOOLS TO ASSESS THE 

ECOLOGICAL COHERENCE OF NETWORKS 

OF MARINE PROTECTED AREAS 

 

Tese apresentada à Universidade de Aveiro para cumprimento dos 
requisitos necessários à obtenção do grau de Doutor em Ciências do 
Mar, realizada sob a orientação científica do Professor Doutor 
Henrique José de Barros Brito Queiroga, Professor Associado com 
Agregação do Departamento de Biologia da Universidade de Aveiro e 
co-orientação da Professora Doutora Ann Vanreusel, Professora 
Catedrática do Departamento de Biologia da Universidade de Ghent, 
Bélgica. 

  

 

 

 

 

 

 

 

  

 
This work was funded by Fundação para a Ciência e Tecnologia FCT 
research project 'LarvalSources - Assessing the ecological performance 
of marine protected area networks' (PTDC/BIA-BIC/120483/2010) and 
through a MARES PhD Grant (MARES_12_10). MARES is a Joint 
Doctorate programme selected under Erasmus Mundus coordinated by 
Ghent University (FPA 2011-0016). 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

o júri   
 

presidente Professor Doutor Amadeu Mortágua Velho da Maia Soares 

Professor Catedrático da Universidade de Aveiro 

 

vogais Professor Doutor Henrique Manuel Roque Nogueira Cabral 

Professor Catedrático da Universidade de Lisboa  

  

 Professor Doutor Karim Erzini 

Professor Associado com Agregação da Universidade do Algarve 

  

 Professora Doutora Maria De Fátima Lopes Alves 

Professora Auxiliar c/ Agregação da Universidade de Aveiro  

  

 Professor Doutor Steven Degraer 

Professor Convidado da Universidade de Ghent, Bélgica 

  

 Professor Doutor Jan Vanaverbeke 

Professor Convidado da Universidade de Ghent, Bélgica 

  

 Professor Doutor Henrique José De Barros Brito Queiroga (orientador) 

Professor Associado c/ Agregação da Universidade de Aveiro 

 

 

 

  



 
 

  



 
 

 

  

  
 

Agradecimentos/ 
Acknowledgements 

“The fun factor isn’t essential to creative work, (...) but sometimes when we’re 
playing around with ideas and laughing, we’re most open to new thoughts. In all 
creative work, there may be frustrations, problems, and dead ends along the 
way. (...) However, there’s always profound pleasure at some point, and a deep 
sense of satisfaction from “getting it right.”  
 
 Ken Robinson, The Element: How Finding Your Passion Changes Everything. 

 

Ken Robinson is one of the greatest communicators I know. I deeply share his 
ideas on education and creativity. In science, as in arts and life itself, answering 
difficult questions involves re-imagining complex problems, creatively 
formulating new ideas and connections to find ways to solve them. In this 
sense, I am genuinely grateful to have been given the opportunity to work with 
such an amazing group of people, who valued science, creativity and a good 
laugh.  
 
Thank you, Professor Henrique Queiroga, for leading the way. For being there 
since day one; in the next table, in the office upstairs, or a telephone or Skype 
call away. Thank you for your guidance, your positive attitude, leadership and 
your trust in me. Also, thanks to professor Ann Vanreusel for making me feel 
welcome at the UGent Marine Biology research group and all your assistance 
and logistical support. I would also like to express a special thank you to 
professor Stephen Swearer, Dr. Rita Nolasco and professor Jesus Dubert for 
your constructive attitude, suggestions and corrections, and Klaas Deneudt for 
your help, hard work and expertise. 
 
To the MARES consortium, thank you for your vision and for funding this 
research. It has been a privilege to follow your initiatives, and I can only hope to 
continue using my skills for the purpose that has united us from the beginning: 
Marine Conservation. A special thank you to the personnel at UGhent 
Child Care for your help in making it all so natural and simple. Also, thank you 
Alexandra Elbakyan, creator of Sci-Hub, for fighting for equal access to 
scientific information, and for allowing me to work from many desks, in many 
places. 
 
Graciñas Laura Peteiro, my post doc, mussel, statistical and good vibe guru. 
Every time we seemed to be reaching a dead end, you took a moment, looked 
at me with your big eyes, smiled and said “I have an idea”. Every. Time. And 
the entire thesis-world brightened up. This thesis wouldn’t have been half 
complete (or half fun) if it wasn’t for you. You are part of my tribe, and an 
inspiration. Remember when we were so sleepless from fieldwork that we 
decided to take a 5-day break to a mussel-free zone and booked tickets to the 
middle of the Atlantic, where NO mussel has ever settled (or so we think). That 
is how we rolled.  
.  
 

 

  

https://www.goodreads.com/author/show/43940.Ken_Robinson
https://www.goodreads.com/work/quotes/4271462


 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Agradecimentos/ 
Acknowledgements 
(cont.) 

 
Rui Albuquerque, primo, thanks for being an amazing lab mate; for your hard work in 
the express trips to Australia, and for all the productive and fun times during field work. 
I miss our cool scientific and Benfica-Sporting wanderings over a cold beer and uma 
empalhada ;)  
 
Laura, Rui, it’s hard to articulate how close we get after stopping at 1am at a gas 
station, to fertilize mussel eggs under the moonlight, in the back of our van. 
 
To the Aveiro University lab gang Pedro, Gina, Felisa, Gabriela and Juan, thanks for 
an amazing lab environment and for all the scientific and non-scientific debates over 
coffee-breaks. And to the non lab UA gang, Marta, Luciana, Ana Sousa, Ana Hilário, 
Sofia, Valentina, Veronica. And thank you to the MARES gang, the EMBC gang 
(Ruhama, Lia and Eva, for always being one click away), the Faro gang, the Canarias 
gang, the Kenya gang, and more recently, to the Açores gang. You keep me going. 
And you keep me coming back. And thank you Mpaji, for showing me the true 
meaning of resilience. 
 
Lastly, a special thanks to all my family crew. My parents, for giving me the freedom to 
fly, enjoy the most amazing views, fall and get up. And repeat. Thank you for giving 
me such a powerful background on freedom, curiosity and profound respect for people 
and nature.  
 
Sergi, thanks for being an amazing person. Day. After. Day. With you, I learned to 
overcome my fear of excel spreadsheets, and rediscover science. And love. It has 
been an amazing ride. Finally, Gael, thanks for joining us somewhere between 
chapters IV and V of this thesis. You have already become the most amazing and 
gratifying episode of our lives. 

 

 
 

 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

  

palavras-chave 
 
 
 
    
 
resumo 
 

Redes de Áreas Marinhas Protegidas; Coerência Ecológica; Conectividade; 
Representatividade; Etiquetas naturais; Veículos aéreos não tripulados; 
Modelos Biofíscos; Avaliação Biológica Marinha. 
 
 
 
A pressão internacional para encontrar abordagens ecossistémicas eficazes 
para evitar, reduzir e compensar o impacto das atividades humanas na saúde 
global dos oceanos, está a aumentar. Nesse sentido, as principais políticas 
marítimas europeias e de outras agências internacionais, defendem a 
necessidade de  estabelecer redes ecologicamente coerentes de áreas 
marinhas protegidas (AMPs). 
Atingir a coerência ecológica é, no entanto, uma tarefa complexa dada a 
magnitude do conceito e a falta de definições operacionais objectivas. Deste 
modo, avaliar a coerência ecológica requer abordagens múltiplas para analisar 
a localização, tamanho e espaçamento entre áreas protegidas já selecionadas, 
mas também para inferir sobre a designação de novos locais e melhor a 
performance da rede. O objetivo desta tese é desenvolver e utilizar diferentes 
ferramentas de forma a apoiar e promover uma avaliação da coerência 
ecológica da rede de AMPs em Portugal continental. 
 
Este trabalho utilizou três métodos complementares para estimar 
conectividade larvar ao longo da costa oeste portuguesa, usando o mexilhão 
Mytilus galloprovincialis como espécie-modelo.  O primeiro método retrata o 
uso de etiquetas geoquímicas naturais para fazer o rastreo da origem natal de 
mexilhões, quantificando padrões de conectividade demográfica (trajetórias de 
dispersão e distâncias). Concentrou-se nas AMPs da Arrábida e Berlengas, 
salientando a importância das populações que servem como fonte de 
indivíduos para dispersão e auto-recrutamento dentro das AMPs. O segundo 
método resultou da necessidade de quantificar a cobertura de mexilhão no 
intermareal rochoso, para futura aplicação em modelos de dispersão larvar de 
larga escala. O uso de imagens aéreas de baixa altitude e de alta resolução, 
modelos de superfície tridimensionais e de observações in situ, provaram ser 
uma ferramenta viável para monitorizar ecossistemas intermareais numa 
escala espacial ecologicamente relevante. O efeito de variáveis ambientais 
(complexidade do substrato e exposição às ondas) na densidade e tamanho 
do mexilhão foi também investigado. A densidade máxima de mexilhão no 
substrato rochoso ocorreu com valores intermédios de exposição às ondas no 
Inverno, enquanto que altos valores de exposição às ondas resultaram num 
menor tamanho dos mexilhões. 
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No terceiro estudo, a combinação das estimativas empíricas de conectividade, 
com parâmetros demográficos (fertilidade, comportamento larval, mortalidade) 
permitiram a validação de um modelo numérico biofísico de larga escala. Este 
modelo integrou informações oceanográficas, demográficas e de biologia 
larvar, para simular a dispersão de larvas de M. galloprovincialis ao longo da 
costa oeste da Peninsula Ibérica. O modelo incorporou e simulou também a 
incerteza associada à atribuição da origem das populações referente ao 
método geoquímico. Os resultados demonstraram altos níveis de 
correspondência entre as estimativas independentes de conectividade a uma 
pequena escala espacial. Este modelo validado pode ser usado no futuro para 
investigar dinâmicas metapopulacionais com aplicações em estratégias de 
gestão de AMPs. 
 
Finalmente, utilizou-se uma abordagem ecológica para valorizar a 
biodiversidade marinha ao longo da plataforma continental portuguesa. Este 
protocolo de avaliação biológica integrou informações biológicas e ecológicas 
espaciais, para diversos componentes do ecossistema. Os resultados foram 
ilustrados num mapa global de valor biológico marinho, destacando hotspots 
de significância ecológica. Este estudo avaliou também em que medida as 
zonas de alto valor biológico estavam incluido nas áreas protegidas da rede 
Natura 2000 em Portugal (actuais e propostas). 
 
Ao integrar a informação das vias de conectividade marinha, com uma ampla 
avaliação biológica da costa portuguesa, esta tese procura contribuir para os 
critérios de avaliação de redes de AMPs e dar um passo em frente no sentido 
de o tornar aplicável ao panorama português.  
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modeling; Marine Biological Valuation. 
 

 

 

In order to avoid, reduce and offset the impact that human activities are having 
on the health of the world's oceans, the international demand for a successful 
ecosystem-based approach to the marine environment is growing in popularity. 
Major European maritime policies and other international agencies advocate 
that, in order to effectively protect the marine environment, there is a need to 
establish ecologically coherent networks of marine protected areas (MPAs). 
Achieving ecological coherence is, however, a complex task given the 
magnitude of the concept and the lack of clear operational definitions. 
Therefore, assessing ecological coherence requires multiple approaches to 
analyse not only the location, size and spacing of protected sites already 
selected for protection, but also infer about new sites to enhance network 
effects. The aim of this thesis is to develop and use different tools to assist, 
support and help to promote the assessment of the ecological coherence of 
networks of MPAs, with a focus on continental Portugal.  
 
Three complementary methods were applied using the mussel Mytilus 
galloprovincialis as a model species to estimate connectivity via larval dispersal 
along the Portuguese west coast. The first study described the use of natural 
geochemical tags to trace back natal origins of mussels and describe direct 
measures of demographic connectivity patterns (dispersal trajectories and 
distances). It focused in the Arrábida and Berlengas Marine Protected Areas 
(MPAs) and emphasized the significance of source and sink populations and 
self-recruitment within MPAs. The second study resulted from the need to 
quantify mussel bed coverage in order to apply the connectivity estimates into 
broader scale models of larval dispersal. The use of low altitude and high-
resolution drone imagery, 3D surface models and ground-based observations 
proved to be a viable and powerful tool for surveying intertidal ecosystems at 
an ecological relevant spatial scale. The effect of environmental variables 
(substrate complexity and wave exposure) on mussel density and size was also 
investigated. Maximum mussel density occurred at intermediate values of wave 
exposure in winter while smaller sized mussels prevailed at high values of 
wave exposure. 
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The combination of the empirical connectivity estimates, with mussel 
demographic and biological parameters (reproductive output, larval behaviour, 
mortality) allowed the validation of a broad scale numerical biophysical model 
in the third study This model combined oceanographic and demographic 
information with larval biology, and was used to simulate dispersal of M. 
galloprovincialis larvae along the Western Iberian coast. The biophysical model 
simulated and accounted for uncertainty of the geochemical method in the 
assignment of source populations and resulted in unprecedented levels of 
correspondence among independent connectivity estimates at small spatial 
scales. This fine-tuned model can be used in the future to investigate 
metapopulation dynamics with applications in MPA management strategies.  
 
Finally, a quantitative-based ecological approach was used to value biodiversity 
along the Portuguese continental shelf. The marine biological valuation protocol 
summarized and combined existing biological and ecological spatial information 
of different ecosystem components into an overall map of marine biological 
value, highlighting hotspots of ecological significance. This study also 
evaluated the extent to which high biological value was contained in the current 
and projected Natura 2000 sites in Portugal.  
 
By integrating the information of marine connectivity pathways, with a broad 
biological assessment of the Portuguese coast, this thesis seeks to build upon 
existing MPA assessment criterion and take a step forward in making it 
practical and applicable to the Portuguese setting. 
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De internationale vraag naar een succesvolle ecosysteem-gebaseerde aanpak 
om de impact van menselijke activiteiten op de gezondheid van de oceanen te 
vermijden, te reduceren of te compenseren, neemt toe in populariteit. 
Belangrijke Europese maritieme beleidsinstanties en andere internationale 
agentschappen benadrukken dat het oprichten van ecologisch coherente 
netwerken van beschermde zeegebieden noodzakelijk is om het mariene milieu 
doeltreffend te beschermen.   
Echter, het bereiken van ecologische coherentie is een complexe taak gezien 
het ruime concept en het ontbreken van eenduidige operationele definities. Het 
vaststellen van ecologische coherentie vereist dus verschillende benaderingen. 
Op die manier kan niet alleen de locatie, de grootte en afstand van reeds 
geselecteerde gebieden voor bescherming bepaald worden, maar ook nieuwe 
locaties die het netwerkeffect versterken. Het doel van deze thesis is het 
ontwikkelen en toepassen van verschillende methodes als hulpmiddel om de 
ecologische samenhang van beschermde zeegebieden te promoten, en dit met 
focus op het Portugese continentale plat.  
 
Drie complementaire methodes werden toegepast om de connectiviteit via 
larvale dispersie in te schatten langs de Portugese westkust en dit telkens 
toegepast op de mossel Mytilus galloprovincialis als modelorganisme. De 
eerste studie beschrijft het gebruik van natuurlijk voorkomende geochemische 
tracers om de oorsprong van de mossels te achterhalen en documenteert dus 
de demografische connectiviteitspatronen (verspreidingsroutes en afstanden). 
De focus lag op de beschermde zeegebieden van Arrábida en Berlengas, en 
benadrukte het belang van ‘source–and–sink’ populaties en zelf-recrutering 
binnen de beschermde gebieden. In een tweede studie werd de oppervlakte 
van mosselbedden gekwantificeerd zodat de connectiviteitsschattingen konden 
toegepast worden op modellen van larvale dispersie op grotere schaal. Het 
gebruik van beeldmateriaal met hoge resolutie verzameld door drones op lage 
hoogte, 3D-oppervlakte modellen en veldobservaties bleek een efficiënte 
methode om intertidale ecosystemen te bestuderen op een ecologisch 
relevante schaal. De combinatie van empirische connectiviteitsschattingen en 
demografische en biologische parameters (oppervlakte van mosselbedden, 
gedrag van larves, mortaliteit, reproductieve output en timing) laat de validatie 
toe van een grootschalig numeriek, biofysisch model. Het effect van de 
omgevingsvariablen (zoals substratum complexiteit en blootstelling aan golven) 
op de mosseldichtheid en -grootte werd ook onderzocht. Maximum 
mosseldichtheid kwam voor bij intermediaire waarden van golfblootstelling in 
de winter en kleinere mosselen domineerden bij hoge waarden van 
blootstelling aan golven. 

 

 



 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 
 
 
 
abstract  
(cont.) 
 

 
 
 
 
 
 
 
 
 
 
 
 
Dit model combineert oceanografische en demografische informatie met larvale 
biologie, en werd gebruikt om de dispersie van M. galloprovincialis larven langs 
de West-Iberische kust te simuleren. Het biofysisch model hield rekening met 
de onzekerheid van de geochemische methode in het toekennen van de 
‘source’ populaties en resulteerde in ongeziene overeenkomsten tussen de 
onafhankelijke connectiviteitsschattingen op kleine schaal. Vanaf nu kan dit 
verfijnde model gebruikt worden om de dynamieken van metapopulaties te 
onderzoeken en kan het dus bijdragen aan weldoordachte strategieën met 
betrekking tot het oprichten van beschermde zeegebieden        
 
Tot slot werd een kwantitatief-gebaseerde ecologische aanpak gebruikt om de 
biodiversiteit te bepalen langs het Portugees continentaal plat. Het protocol 
voor mariene biologische waardebepaling combineerde bestaande biologische 
en ecologische informatie van verschillende subzones in een kaart die de 
biologische waardebepaling weergeeft, en hotspots van ecologisch belang 
identificeert. Deze studie evalueerde ook de mate waarin grote biologische 
waarde vervat zit in de huidige en toekomstige Natura 2000 gebieden in 
Portugal.   
Door het integreren van informatie over mariene connectiviteitsroutes, met 
breed biologisch onderzoek langs de Portugese kust, bouwt deze thesis verder 
op het bestaande criterium voor de selectie van beschermde gebieden, en 
maakt het praktisch en toepasbaar voor Portugal. 
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“If we knew what it was we were doing  

it would not be called research, would it?” 

 
Albert Einstein (most likely)   
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Thesis Overview  

 

 Assessing ecological coherence of networks of Marine Protected Areas (MPAs) is a 

contemporary issue. Major European and other international agencies advocate that, in order 

to effectively protect the marine environment, a network of MPAs needs to be ecologically 

coherent. To achieve this goal, four main factors need to be taken into consideration: 

connectivity, adequacy, representativity, and replication. However, given the magnitude of the 

concept and the lack of clear operational definitions, building a coherent network of MPAs is a 

challenge. The aim of this thesis is not to provide an absolute assessment of “coherency” 

within the network of MPAs in Portugal, but rather to use and develop different tools to assist, 

support and help to promote this complex but crucial task.  

 The criteria of connectivity, adequacy, representativity, and replication ultimately 

reflect ideal MPA size, spacing, shape and the distribution and ecology of species and habitats 

at different scales. These concepts are reviewed in Chapter I, together with an overview of 

threshold levels used to assist in the guidance and measurement of coherence. This chapter 

highlighted the international pressure and the current constraints to set up coherent networks 

of MPAs so as to protect the structures and functions of marine systems, and promote 

economic and social benefits in an integrative manner. Also, it reflects on the current 

Portuguese situation in terms of marine protected areas’ implementation and management 

and the conservation strategies underlying the National Strategy for the Seas (ENM 2013-

2020) and the Portuguese Natura 2000 sites. Chapters II to IV concentrate on tools to 

investigate population connectivity among MPAs, one of the overarching performance criteria 

of networks of MPAs. Three different but complementary methods were applied using the 

mussel Mytilus galloprovincialis as a model species to estimate larval dispersal along the 

Portuguese west coast. Chapter V, in turn, focuses on the intrinsic value incorporated in 

biodiversity per se, to detect hotspots of high biological value in the study area.  

 Chapter II describes the use of natural geochemical tags (of larval and recruit shells) to 

trace back natal origins of mussels and describe the connectivity patterns among the Arrábida 

and Berlengas Marine Protected Areas (MPAs) in the central Portuguese west coast. This 

chapter describes direct measures of demographic connectivity (dispersal trajectories and 

distances) for an important ecosystem engineer in rocky shores and emphasizes the 

significance of source and sink populations and self-recruitment within MPAs. Our results 

suggest that protected sites should be placed within around 50 km from each other to 

maximize benefits for mytilid marine larvae with potential large-scale dispersal among rocky 

intertidal areas. 
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 Research Questions: 

1. Are geochemical signatures in larval shells adequate to distinguish natal sources of 

mussel recruits (spatial scale of geochemical variability)? 

2. What are the main dispersal trajectories and distances and how much self-recruitment 

occurs during the study period?  

3. What is the degree of connectivity between the two Portuguese MPAs and among 

these and the remaining coast? 

4. Are the results consistent with simultaneous environmental and oceanographic data? 

 

 Chapter III resulted from the need to quantify mussel bed coverage in order to apply 

the connectivity estimates into broader scale models of larval dispersal. This way, this chapter 

describes the use of low altitude and high-resolution drone imagery, 3D surface models and 

ground based observations as a viable and powerful tool for surveying intertidal ecosystems. 

Aerial images were mosaicked and georeferenced and a 3D photogrammetric model was 

reconstructed with a ground resolution of less than 1cm/pixel. Mussel coverage, density and 

mean size was then calculated for each location and modelled along the central Portuguese 

west coast as a function of a wave exposure index.  

 

 Research Questions: 

1. Are low altitude-high resolution aerial images useful in investigating fine-scale rocky 

intertidal topography and mussel coverage in rocky intertidal shores? 

2. Does combining aerial images with 3D photogrammetric models and ground-based 

quadrat sampling provide realistic measurements of mussel bed coverage, density and 

size? 

3. Are wave exposure and terrain roughness good explanatory variables of mussel 

coverage and size?  

 

 Chapter IV puts together the results of Chapters II and III by comparing the empirical 

connectivity matrices obtained with geochemical tags with predicted connectivity matrices 

produced by a numerical biophysical model. This model combined oceanographic and 

demographic information with larval biology, which was used to simulate dispersal of M. 

galloprovincialis larvae along the study area. In addition to predicting larval dispersal, this 

chapter uses the biophysical model to simulate and account for uncertainty of the geochemical 

method in the assignment of recruits to putative source populations, thereby improving the 

cross-validation of two independent estimates of marine population connectivity. 
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 Research Questions: 

1. What is the current situation on scientific studies dealing with multiple methodological 

approaches to increase confidence in estimates of population connectivity?  

2. Does accounting for uncertainties in larval origins derived from elemental chemistry 

improve concordance with predictions from a biophysical model of dispersal? 

 

 Chapter V explores a quantitative-based ecological approach which combines and 

spatially evaluates data for a wide taxonomic range of ecosystem components (seabirds, 

demersal fish and invertebrates, macrobenthos, marine mammals and sea turtles) at the scale 

of tens of kilometres. The Marine Biological Valuation (MBV) protocol was applied along the 

continental Portuguese continental shelf to create maps describing patterns of biological value 

and biodiversity hotspot areas. This study also considered the extent to which high biological 

value was contained in current Natura 2000 Special Protection Areas and projected Sites of 

Community Importance in Portugal.  

 

 Research Questions: 

1. Which databases are available on the distribution and abundance of different 

ecosystem components (seabirds, demersal fish, macrobenthos, marine mammals and 

sea turtles) at the scale of tens of kilometres along the continental Portuguese shelf? 

2. Does the data have enough spatial and temporal resolution to apply the marine 

biological valuation protocol? 

3. What is the spatial overlap of the high valuable areas (hotspots) with current and 

prospected marine conservation areas (Natura 2000 network)? 

4. What is the significance of the results in the context of the Portuguese marine spatial 

planning and conservation strategies? 

 

 Finally, Chapter VI builds upon the overall findings and integrates and discusses the 

results within the context of the assessment of MPA networks at the national scale. It also 

briefly provides some general guidelines for future work, in order to use the best available 

scientific information for the design and assessment of the network. By integrating the 

information of marine connectivity pathways with a broad biological assessment of the 

Portuguese coast, this thesis hopes to assist in the ongoing process of MPA design and 

assessment and take a step forward in the guidance of conservation management applicable 

to the Portuguese setting. 
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 The results of this thesis have been partially presented at various national and 

international conferences and published (or submitted) to peer-reviewed journals, as follows: 
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Gomes I, Peteiro LG, Bueno J, Albuquerque R, Nolasco R, Dubert J, Queiroga H, 2018. What's a 

picture really worth? On the use of drone aerial imagery to estimate intertidal rocky 

shore demographic parameters (under review) Estuarine and Coastal Shelf Science. 

Gomes I, Pérez-Jorge S, Peteiro L, Andrade J, Bueno-Pardo J, Quintino V, Rodrigues AM, 

Azevedo M, Vanreusel A, Queiroga H, Deneudt K, 2017. Marine biological value along 

the Portuguese continental shelf; insights into current conservation and management 
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Nolasco R, Gomes I, Peteiro L, Albuquerque R, Luna T, Dubert J, Swearer SE, Queiroga H, 2018. 

Independent estimates of marine population connectivity are more concordant when 

accounting for uncertainties in larval origins. Scientific Reports.  8 (1) pp: 2641 

doi:10.1038/s41598-018-19833-w 

Gomes I, Peteiro LG, Albuquerque R, Nolasco R, Dubert J, Swearer SE, Queiroga H, 2016. 
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Oral communications: 

 

Queiroga H, Gomes I. 2018. Valor biológico e conectividade populacional: ferramentas 

complementares para designar redes de áreas marinhas protegidas. Primeiro Congresso 
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Gomes I, Peteiro L, Albuqerque R, Bueno J, Nolasco R, Dubert J, Swearer S, Queiroga H, 2017. 

Connectivity and Demographic insights of Mytilus galloprovincialis in the Portuguese 
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Sète, France. (oral presentation) 

Andrade J, Albuquerque R, Azevedo M, Pardo JB, Deneudt K, Dubert J, Gomes I, Nolasco R, 

Perez S, Peteiro L, Quintino V,. Swearer SE, Vanreusel A, Queiroga H 2017. Biological 

value and population connectivity assessments: complementary tools to designate 

networks of MPAs. III Internacional Workshop LIFE+ MarPro. Ilhavo, Portugal. (oral 

presentation) 

https://doi.org/10.1016/j.ecolind.2018.05.040
https://doi.org/10.3354/meps11753
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Chapter I 
Introduction 

Overview of the current status of the criteria used to designate and assess networks of Marine 

Protected Areas (MPAs)  
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1.1 The evolution of MPAs as conservation management tools 

 

 Coherent networks of MPAs in Europe have been largely driven by the Natura 2000 

process, by regional seas conventions, and backed up by national legislations. Rather than 

exhaustingly define all criteria and target levels used in many contexts, and already reviewed 

in several policy documents, technical reports and publications (see Ardron 2008, HELCOM 

2010, Olsen et al. 2013, Wolters et al. 2015), this section focuses on key guiding principles and 

criteria supporting the design and assessment of the multi-faceted model for ecologically 

coherent networks of MPAs. 

 A broad spectrum of atmospheric, land and ocean anthropogenic based activities, 

together with the exponential growth of the human population and coastal relocation, is 

causing complex modifications in the physical structure (e.g. Watling and Norse 1998), 

chemistry (e.g. Boesch et al. 2001) and ecology (Lubchenco 1995, Botsford et al. 1997, 

Vitousek et al. 1997, Hutchings 2000, Jackson et al. 2001) of the oceans, and consequently in 

the ecosystem services they provide (Worm et al. 2006). 

The marine environment, once considered a resilient and inexhaustible ecosystem, is now 

facing cumulative anthropogenic stressors (Halpern et al. 2007) that are changing the 

structure, dynamics and functioning of ecosystem and its ability to supply goods and services 

to society (Cardinale et al. 2012). Furthermore, research suggests that the projected pace of 

human population growth will contribute substantially to environmental degradation (Crist et 

al. 2017). As a result, there is an urgent need in achieving high standards of sustainable human 

development while protecting biodiversity. This notion is an important foundation stone for 

several and contemporary regional and global commitments and is included in the 2030 United 

Nations Agenda for Sustainable Development Goals (SDGs):  “To sustainably manage and 

protect marine and coastal ecosystems to avoid significant adverse impacts, including by 

strengthening their resilience, and take action for their restoration in order to achieve healthy 

and productive oceans”. In fact, the United Nations just announced the Decade of Ocean 

Science for Sustainable Development (2021-2030), an initiative to boost international 

cooperation in ocean sciences. 

 In both terrestrial and marine systems, the creation of protected areas is a 

cornerstone tool to promote conservation and manage human activities and sustainable 

resource exploitation (Gaines et al. 2010). Marine Protected Areas (MPAs) are defined by the 

International Union for Conservation of Nature (IUCN) as “a clearly defined geographical 

space, recognized, dedicated and managed, through legal or other effective means, to achieve 

long-term conservation of nature with associated ecosystem services and cultural values”. 

http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E
http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E
http://www.un.org/sustainabledevelopment/sustainable-development-goals/
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Therefore, MPAs serve as spatial administrative tools which encompass a variety of 

conservation and management methods, employed in a wide range of habitats including the 

open ocean, deep sea, coastal areas, inter-tidal zones, estuaries and lakes. However, the 

employment of the label ‘‘Marine Protected Area’’ diverges amongst international agencies 

and national authorities, and comprises a large variety of zoning and management schemes, 

from multiple use to fully no-take no-entry zones. This variability provides little information on 

the whole-ecosystem conservation and might prevent a correct evaluation of the existing 

types of MPAs and their efficiency (Horta e Costa et al. 2016). In fact, when Costello and 

Ballantine (2015) analysed the 2013 World Database on Protected Areas (United Nations 

Environmental Programme), they found out that protection is generally weak: 94% of 

designated MPAs allow fishing and less than 1% of the ocean is a no-take reserve. 

 There is an extensive and growing body of scientific evidence regarding marine 

protected areas ecological, social and economic benefits. Yet, MPAs have also been criticized 

to cause social and economic constraints for local communities. This way, there is a consensus 

that a simple label of MPAs cannot guarantee long term conservation objectives, especially if 

they are selected under ineffective design (Cox et al. 2017) and if there are large shortfalls in 

our capacity to manage, monitor and finance those areas (Bennett and Dearden 2014). 

 In general, MPAs’ benefits and/or challenges (table 1.1) largely depend on MPA 

purpose, location, design, management approaches and level of protection, funding and 

restrictions on human uses. Edgar et al. (2014) investigated 87 MPAs worldwide and 

documented that conservation benefits increase exponentially with the accumulation of five 

key features: old (>10 years), large (>100 km2), no take areas, well enforced management plans 

and isolated by deep water or sand. Yet, a recent study by Gill et al. (2017), reporting on 218 

MPAs worldwide, concluded that staff and budget capacity were the strongest predictors of 

conservation impact; MPAs with adequate staff capacity had ecological effects 2.9 times 

greater than MPAs with inadequate capacity.  
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Table 1.1 Major MPAs’ benefits and/or challenges and examples cited in the literature. 

 

Benefits Chalenges 

Description Examples Description Examples 

    Protecting 
biodiversity and 
increasing 
productivity 

Halpern and Warner 2002  
Mumby et al. 2007 
Russ and Alcala 1996                   
Lester et al. 2009 Lack of proper 

resources, 
planning, or 
enforcement 
mechanisms  

Bruner et al. 2004 
Byers and Noonburg 2007 
Guidetti et al. 2008 McCay 
and Jones, 2011 
McClanahan et al. 2006 
 Rife et al. 2013 
 Rojas-Bracho et al. 2006 

Providing 
Ecosystem 
Services 

Potts et al. 2014                          
Leenhardt et al. 2015 
Xu et al. 2017 

Increasing 
ecologic 
resilience  

Babcock et al. 2010 
White et al. 2012  

Increasing 
recreational 
and tourism 
opportunities 

Taylor and Buckenham 2003     
Weiant and Aswani 2006 
Hayes et al. 2015                                

Tourism  Harriott et al. 1997 

Enhacing of 
fisheries  

Gell and Roberts 2003              
Harrison et al. 2012 
Moland et al. 2013 

Negative impacts 
on fisheries 

Caveen et al. 2014  

Cost Balmford et al. 2003 
Costs and/or legal 
context 

Lowry et al. 2009 
McCrea-Strub et al. 2011  

Supporting 
health, social or 
cultural values   

Aswani and Furusawa 2007 
Cinner et al. 2005  
Gjertsen 2005  
Pollnac et al. 2010 

Social constraints 

Bennett and Dearden 2014 
Himes 2007 
Mascia et al. 2010 
 West et al. 2006 

Protecting 
specific 
habitats, 
species or 
functional 
groups 

Fish, Russ and Alcala 1996 
Megafauna, Hooker and Gerber 2004  
Penguins, Pichegru et al. 2010 
Sharks, Knip et al. 2012 
Dolphins, Pérez-Jorge et al. 2015 
Seabirds, Maxwell et al. 2016 
Coral reefs, Mcclanahan et al. 2007 
Habitats, Fraschetti et al. 2013  

Disadvantages of 
very large marine 
protected areas 
and/or rush to 
achieve 
percentage 
targets  

Agardy et al. 2011 
De Santo 2013 
Devillers et al. 2015 
Jones and De Santo 2016 
Sheppard et al. 2012 
Singleton and Roberts 2014 
Wood 2011 
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Despite some ongoing debate on conservation needs and priorities, MPAs have materialized as 

a mainstream management tool for promoting long-term conservation and sustainable use of 

marine resources (Halpern and Warner 2002), and symbolize a key task for different EU 

coastal, marine and biodiversity policies. Still, the progress towards protecting coastal and 

marine areas has been much slower than their terrestrial equivalent (Watson et al. 2014) and a 

global marine gap analysis demonstrated that most marine species have less than 10% of their 

geographic range inside MPAs (Klein et al. 2015).  

 Even though only a small fraction of the ocean is protected, a considerable progress 

has been made in the last decade. Lubchenco and Grorud-Colvert (2015) reported 3.5% of the 

ocean being protected, while the current assessment by the United Nations Environment 

World Conservation Monitoring Centre (UNEP-WCMC) with support from IUCN and its World 

Commission on Protected Areas (WCPA) refers that 6.97% of the global seas are protected 

(Fig.1.1). This rise is expected to continue in the next years, with the emerging trend for 

establishing and implementing remote large-scale marine protected areas within and beyond 

national jurisdiction (Leenhardt et al. 2015). Marae Moana Marine Park in the Cook Islands 

designated in 2017 became the largest multi-use marine park in the world, covering an area of 

of nearly two million square kilometres. 

 While the broad objective of the initial movement for protected areas was to conserve 

iconic and vulnerable seascapes and species, their purpose has changed over the past century 

towards the emergence of a much more systematic and ecosystem-based approach. A shift in 

protected areas philosophy promotes the protection of the structures and functions of marine 

systems, the provision of crucial ecosystem services (food security, human health, carbon 

storage), contribution to national and local economies (replenish fisheries, tourism revenues), 

and expects them to play a key part in the resilience and mitigation of climate change (Watson 

et al. 2014, Gormley et al. 2015).  

 
 
 
 

https://www.protectedplanet.net/555624907
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Figure 1.1 Map showing current worldwide MPAs (blue polygons and dark coastal contour). This 

database is updated monthly and managed by the United Nations Environment World Conservation 

Monitoring Centre (UNEP-WCMC) with support from IUCN and its World Commission on Protected 

Areas (WCPA). At present, the database reports 15 609 designated, inscribed, and/or established MPAs, 

includes 25,245,207 km² of marine areas and covers 6.97% of the total ocean 

(https://protectedplanet.net/marine). 

 

 

 In general, MPAs’ benefits and/or challenges largely depend on MPA purpose, 

location, design, management approaches and level of protection, funding and restrictions on 

human uses. Currently, MPAs should no longer be established on an individual ad hoc basis, 

but scale up to a network approach, considering the protection of the structures and functions 

of marine systems, in an integrative manner.  

 

1.2 From individual MPAs to Networks of MPAs  

 

 At an international level, the fact that MPAs should work in synergy with each other 

has been comprehensively outlined by the International Convention on Biological Diversity 

Aichi Biodiversity Target 11 (CBD 2010). This target for marine conservation, signed by over 

150 government leaders, states that “by 2020 at least 10% of coastal and marine areas, 

especially areas of particular importance for biodiversity and ecosystem services, would be 

conserved through effectively and equitably managed, ecologically representative and well-

connected systems of protected areas and other effective area-based conservation measures 

that are integrated into the wider seascapes.”  This way, simply reaching large percentage area 

https://protectedplanet.net/marine
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coverage of MPAs is not sufficient to meet the requirement of ‘ecologically representative and 

well-connected systems’ defined by the CBD.  

 A more ambitious goal was set by the IUCN World Parks Congress 2014 in Sydney, with 

a recommendation to “urgently increase the ocean area that is effectively and equitably 

managed in ecologically representative and well-connected systems of MPAs or other effective 

conservation measures. This network should target protection of both biodiversity and 

ecosystem services and should include at least 30% of each marine habitat. The ultimate aim is 

to create a fully sustainable ocean, at least 30% of which has no extractive activities." 

 The term ‘network of MPAs’ is therefore frequently used in environmental policies and 

guidelines, but it is still poorly defined. In this sense, it is important to distinguish a network of 

MPAs from a set of MPAs (Roff 2005). While a set of MPAs is any group of protected areas 

within a defined geographic region, a network of MPAs is a “a collection of individual MPAs 

operating cooperatively and synergistically, at various spatial scales, and with a range of 

protection levels designed to meet objectives that a single reserve cannot achieve” (IUCN-

WCPA 2008). It is then expected that the network increases the ecological, social and 

economic benefits when compared to the individual performance of its constituent MPAs. 

Planning for the networks requires careful considerations of their purpose for implementation, 

design, size, spacing and level of protection of the individual MPAs. Several studies have 

already highlighted the ecological benefits of networks of MPAs (Sala et al. 2002, Planes et al. 

2009, Christie et al. 2010, Grorud-Colvert et al. 2014). 

 In European waters, MPA networks have largely been driven by the European Union 

(EU) Natura 2000 network, an important environmental pillar of the wider EU Integrated 

Maritime Policy. This ongoing process aims to develop a coherent network of special areas of 

conservation to protect threatened species and vulnerable habitats. The marine area included 

in the network doubled in the last five years and is currently comprised of more than 3140 

marine sites, covering around 7% of EU seas (Natura barometer October 2017).  

 Additionally, the Marine Strategy Framework Directive (MSFD) stipulates that Member 

States need to include into their programmes “spatial protection measures, contributing to 

coherent and representative networks of MPAs”, so as to support a Good Environmental Status 

(GES) in the marine environment by 2020. Moreover, the European Regional Seas Committees 

(RSC) promotes the establishment of a coherent network of MPAs to ensure the sustainable 

use, protection and conservation of marine biological diversity and its ecosystems (e.g. OSPAR 

2007, HELCOM 2010).  

 

http://ec.europa.eu/dgs/maritimeaffairs_fisheries/index_en.htm
http://ec.europa.eu/dgs/maritimeaffairs_fisheries/index_en.htm
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 At the national level, the Portuguese government recently adopted the National 

Strategy for the Seas (ENM 2013-2020) (Resolution of the Council of Ministers No. 12/2014 of 

12 February. D.R. No. 30, Series I). It promotes “the establishment of a network of marine 

protected areas, efficiently managed, coherent and adapted to the territory within the 

framework of the international commitments and the national strategy for nature 

conservation, in order to recover degraded ecosystems and promote its potential as a 

recruitment area, thus contributing to improve the efficiency of activities, in particular 

fisheries”. Importantly, it also refers that the “the delimitation of new marine protected areas, 

as well as the implementation of management plans, requires the scientific recognition of the 

natural values and its impacts and pressures, thus contributing to consolidate the process of 

the Natura 2000 network to the marine environment.”  

 In mainland Portugal, which is the focus of this thesis, the establishment and 

management of protected areas (at national and regional level) is a competency of the 

Institute for Nature Conservation and Forests (ICNF) in articulation with the Directorate-

General of Natural Resources, Security and Maritime Services. The designation of areas 

classified under the Natura 2000 network, RAMSAR Convention, European Network of 

Biogenetic Reserves (Council of Europe) and the Biosphere Reserves (Man and Biosphere - 

UNESCO) – are also a responsibility of ICNF. There are different types of protected areas with 

different management objectives and regimes according to the protection category: natural 

monuments, natural reserves, natural parks, national parks, protected landscapes, classified 

sites, private protected areas and “marine parks or “marine reserves”. 

 Six national protected areas in mainland Portugal include a maritime area, hereafter 

called national marine protected areas. They cover an area of 535.71 km2, representing 0.16% 

of the Portuguese EEZ (of mainland territory), with a combined no-take area barely covering 5 

km2 (0.0015% of the EEZ). Their sizes range from 2.6 km2 to 290 km2, and are separated from 

each other by an average distance of 80 km (Abecasis et al. 2017). Regarding the Natura 2000 

network, Portugal has already designated 7 marine Special Protection Areas (SPAs) under 

the Birds Directive, covering an area of 6366 km². As for the Habitats Directive (Sites of 

Community Importance, SCIs) Portugal designated 6 sites, covering an area of 23340 km² 

(Banco Gorring SCI alone covers an area of 22887.8 km²). There is also a formalized national 

proposal for the creation (or expansion) of 3 additional marine SCIs, awaitting approval by 

competent national authorities. While SPAs are designated directly by Member States, SCIs are 

first proposed by Member States and, when approved by the European Commission, are 

designated as Special Areas of Conservation (SACs). Portuguese MPAs, designated Natura 2000 

http://ec.europa.eu/environment/nature/natura2000/sites_birds/index_en.htm
http://ec.europa.eu/environment/nature/natura2000/sites_hab/index_en.htm
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SPAs and SCIs and currently proposed SCIs in continental Portuguese shelf waters, are mapped 

in Fig. 1.2, 1.3 and described in table 1.2. 

  

Figure 1.2 A - Current Portuguese MPAs B – Natura 2000 Special Protection Areas (SPAs) C - Existing and 

proposed Natura 2000 Sites of Community Importance (SCI). Banco Gorringe SCI is showed in figure 1.3. 

Dashed lines represent 200 m depth contours. Numbers in the maps are described in Table 1.2.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.3 Overall MPA coverage in the Exclusive Economic Zone of mainland Portugal (9.22% coverage). 
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Table 1.2 Current Portuguese MPAs, Natura 2000 SPAs and SCIs (and proposed SCIs). Numbers 

represent areas in figures 1.2 and 1.3 and areas in brackets represent no-take areas.   

 

 

 
*The total area of Portuguese continental Exclusive Economic Zone (EEZ) is 327,667 Km².  
**According to the IUCN categorization of protected areas, Category IV (Habitat/Species Management) - protected 
areas aimed to protect particular species or habitats and management should reflect this priority. Category V 
(Protected Landscape/Seascape) - A protected area where the interaction of people and nature over time has 
produced an area of distinct character with significant, ecological, biological, cultural and scenic value: and where 
safeguarding the integrity of this interaction is vital to protecting and sustaining the area and its associated nature 
conservation and other values.  
 

 

 Networks of MPAs should operate cooperatively and synergistically to meet objectives 

that a single reserve cannot complete. In Europe, the process of creating networks of MPAs 

have been largely motivated by the CBD international target for marine protection, and driven 

by the Natura 2000 process, by Regional Seas Conventions, and backed up by national 

legislations. 

 

 

Classification Nº Designation Area (km²) 

Creation 

(reclassificat

ion)

Managem

ent Plan 

(IUCN)

category)

General objectives

Park 1 Li tora l  Norte  74.5 1987 (2005) 2008 (V)

Reserve 2 Dunas  de Sao Jacinto 2.6 1979 (2004) 2005 (IV)

Park 3 Berlengas 94.4 1981 (1999) 2008 (IV)

Park 4 Arrábida 52.71 (4.32) 1971 (1976) 1980 (V)

Reserve 5 Lagoas  de Santo André Sancha 21.4 2000 2007 (IV)

Reserve 6 Sudoeste Alentejano e C. Vicentina  290 (0.63) 1988 (1995) 1995 (V)

1 Ria  de Aveiro 264.0 1999

2 Aveiro/Nazaré 2929.3 2015

3 Ilhas  Berlengas 1026.6 1999

4 Cabo Raso 1335.0 2015

5 Cabo Espichel 155.8 1999

6 Costa Sudoeste 552.3 1999

7 Ria  Formosa 103.3 1999

1 Litora l  Norte 17.93 2004

2 Ria  de Aveiro 80.8 1999

3 Peniche/Santa Cruz 57.99 2000

4 Sintra/Cascais 93.13 1997

5 Costa Sudoeste 202.5 1997

6 Banco Gorringe 22887.82 2015

6 Maceda/Pra ia  da  Vieira 5026

7 Costa de Setúbal 1233

8 Costa Sudoeste 1632

Total  area des ignated 30242 (4.95)

% of mainland EEZ protected 9.22% (0.0015%)

Aditional  area proposed 7891.0

TOTAL

National  

MPAs  

Si tes  of 

Community 

importance 

(SCI)

Proposed 

expans ion 

or creation 

of SCIs

Natura  

2000

Specia l  

Protection 

Areas  (SPA)

Habitats , species  and 

cultura l  va lue 

conservation

Sustainable 

management of 

economic activi ties  

and artisanal  fi sheries

Maintenance/restorati

on of  conservation 

s tatus  of  bi rds  species  

l i s ted in Annex A-I to 

Decree-Law No 140/99, 

and their habitats ; and 

migratory species  with 

regular occurrence in 

the national  terri tory.

Contribute to 

biodivers i ty protection 

through the 

conservation of 

threatened natura l  

habitats  and species  

l i s ted in theHabitats  

Directive nº 92/43/CEE

under 

discussion
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1.3 The concept of ecological coherence for networks of MPAs 

 

 In environmental policies, the notion of networks of MPAs is usually associated with 

the concept of ecological coherence, whose definition is still vague and arbitrary. The term 

‘ecological coherence’ lacks a theoretical foundation in ecological conservation science, and 

therefore, is difficult to implement (Jones and Carpenter 2009). Nonetheless, ‘ecological 

coherence’ appears in several key European environmental policy legal documents (reviewed 

in Catchpole 2013), but is rarely employed in peer reviewed environmental publications. 

Results from a search on ISI Web of Knowledge for the words ‘‘ecological coherence’’ or 

‘‘ecologically coherent” appearing in the title or abstract fields resulted in 80 publications, with 

only 25 studies referring networks of MPAs (Fig. 1.4A).  

 From the analysis, 20% of the studies on ISI Web of Knowledge fit in the terrestrial 

ecology field and habitat restoration and almost half of the studies belonged to microbiology 

research field (48%), mostly concerning bacterial communities (where “ecological coherence of 

a taxon”  means sharing general life strategies or traits that distinguish them from members of 

other taxa).  Interestingly, the first peer reviewed study relating ecological coherence and 

networks of MPAs came out in 2008 (Fig. 1.4B), almost 16 years after the Habitats Directive 

(Council Directive 92/43/EEC, Article 3) mention the need of “a coherent European ecological 

network”, and five years after the ministerial commitment to achieve ecological coherence 

within the OSPAR and HELCOM networks of MPAs (JMM 2003). 

 

 

 

Figure 1.4 A - Results from a search on ISI Web of Knowledge for the words ‘‘ecological coherent’’ or 

‘‘ecologically coherent” appearing in the title or abstract fields, separated by research areas.  B - Results 

concerning the search described for the networks of MPAs category. The number of published articles 

per year is plotted. The graph starts with the first hit.  
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 In Europe, the concept of ecological coherence is mostly linked with the Natura 2000 

and regional seas conventions. In the Natura 2000 Habitats Directive (Council Directive 

92/43/EEC), the term “ecological coherence” was made in the preamble to the Habitats 

Directive Article 3.1: “A coherent European ecological network of special areas of conservation 

shall be set up under the title Natura 2000”. In the context of the Natura Directive an 

ecologically coherent network should:  

i. represent the full range of variation in valued features;  

ii. replicate specific features at over a wide geographic area;  

iii. allow for dispersal, migration and genetic exchange of individuals between relevant 

sites, and include all critical areas for rare, highly threatened and endemic species;  

iv. be resilient to disturbance or damage caused by natural and anthropogenic factors. 

 

 A more comprehensive policy-based definition of ecological coherence comes from 

the OSPAR Convention (Ardron 2008), where an ecologically coherent network of MPAs:  

i. interacts with and supports the wider environment;  

ii. maintains the processes, functions and structures of the intended protected 

features across their natural range;  

iii. functions synergistically as a whole, such that the individual protected sites benefit 

from each other in order to achieve the other two objectives; 

iv. should be designed to be resilient to changing conditions. 

 

 In general, these concepts for ecological coherence are built upon many branches of 

ecological theories and supported by evidence-based research on: community ecology (e.g. 

Koelle and Vandermeer 2004, Leibold et al. 2004), ecological health (e.g. Lu and Li 2003), 

ecosystem integrity (e.g. De Leo and Levin 1997) and ecological resilience (e.g. Holling, 1996, 

Peterson 2000, Mumby et al. 2014, Scheffer et al. 2015). An integrated and consensual theory 

of “ecological coherence” is however, still missing.  

 

 The concept of ecological coherent in regards to networks of MPAs seems to be much 

more policy-driven rather than scientifically grounded. Coherent networks should deliver 

added ecological, economic, and social benefits through complementary outcomes of 

individual MPAs in fisheries management (Gell and Roberts 2003), biodiversity conservation 

(Almany et al. 2009) and climate change adaptation and recovery after disturbance (Foley et al. 

2010). 
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1.4 Criteria used to assess the degree of ecological coherence of networks of MPAs 

 

 In order to be efficient, networks of MPAs depend mostly on its configuration (size, 

shape, spacing, and location) and management. It is then necessary to find clear and 

measurable objectives to establish ecologically coherent networks of MPAs and demonstrate 

the ‘added-value’ of MPAs networks in relation to individual ones (Grorud-Colvert et al. 2014). 

For the purpose of this study, and in order to avoid multiple definitions and concepts, I have 

focused on four main criteria used to assess ecological coherence of networks of MPAs, 

recognized by the Convention on Biological Diversity (CBD 2008), the regional sea conventions 

(OSPAR 2007, HELCOM 2010) and recommended by an independent study requested by the 

EU Directorate-General for the Environment (Wolters et al. 2015): representativity, replication, 

adequacy and connectivity.  

 The international guidance reports concerning network coherence show that there is a 

general concordance in these four criteria employed for the European marine regions (Fig. 1.5) 

However, there are other relevant and comparable criteria cited in the literature. For example 

Catchpole (2013) underlined the importance of viability and resilience criteria; Lawton et al. 

(2010) gave more emphasis on anthropogenic factors, such as human accessibility and 

management and for Connor et al. (2002), representativity is called ‘typicalness’. Moreover, 

CBD (2008) considered “Ecologically or biologically significant areas” as places providing 

important services to one or more species/ populations of an ecosystem or to the ecosystem 

as a whole, compared to other surrounding areas. 

 

 1.4.1 Representativity  

 As species diversity increases with habitat diversity, MPAs that include a variety of 

habitats and community types within well-connected networks, contribute to the persistence 

and resilience of ecosystems and ecological processes (Roberts et al. 2003). In this sense, scale 

is a key criterion to assess representative. While at a broader regional level, assessments can 

be made at a biogeographic regional scale defined by temperature and depth or major 

geomorphology (OSPAR 2013), at smaller scales, other units may constitute more ecologically 

meaningful surrogates for representation. Examples include the use of marine landscapes 

(Golding et al. 2004), individual habitat types and species, such as rare habitats (Roberts et al. 

2003) and areas of critical importance for different life stages of species (Roberts and Sargant 

2008). However, the smaller the scale, the more refined and in-depth knowledge is required 

on the overall distributions of habitats and species. 
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 1.4.2 Replication  

 As stated by the CBD (2004): “All habitats within each region should be replicated and 

these should be spatially separate to safeguard against unexpected failures and collapse of 

populations”. Protecting a sufficient number of individuals of species, habitats and ecological 

processes in distant MPAs should promote ecosystem functions and spread over space the 

risks affecting MPAs units (Roberts et al. 2003) enhancing network resilience (IUCN WCPA 

2008), providing new locations for colonization (Crowder et al. 2000) and/or stepping stones 

for dispersal of marine species (Cowen and Sponaugle 2009). Local distribution, vulnerability, 

and pressure assessments at the habitat/species scale should determine the adequate number 

of replicates within the networks of MPAs. 

 

 1.4.3 Adequacy 

 MPA network design should have an appropriate size and shape, as well as a 

satisfactory location and characteristics that minimise the impact of natural or anthropogenic 

threats and preserve the ecological integrity of the ecosystems (HELCOM 2010). Regarding the 

MPAs size, there has been a continuum debate concerning meta-population theory about the 

benefits of a single large or several small (SLOSS) protected areas in conserving biodiversity in 

a fragmented habitat over the long term (Wilcox and Murphy 1985). While large MPAs may 

support larger landscapes and populations, reducing edge effects (Airamé et al. 2003), well 

inter-connected networks of smaller MPAs can support the persistence of populations at a 

greater extent (Zhou and Wang 2006) and maximize spill-over of propagules across the edges 

(Abesamis et al. 2006). As for MPAs shape, it should maximize the inclusion of targeted 

landscapes or habitats, and capture the gradient from onshore-offshore or habitat-habitat 

shifts of species of interest (IUCN-WCPA 2008). This way, adequacy of the network is mostly 

linked with its purpose, habitat extent and distribution, connectivity, population viability and 

anthropogenic threats. 

  

 1.4.4 Connectivity  

 Connectivity expresses the extent to which populations are linked by the exchange of 

propagules (floating eggs, larvae, recruits, juveniles or adults), at the species’ range (Palumbi 

2003), and networks of MPAs should be composed of sites close enough to allow for sufficient 

exchange of adults and offspring. Consequently, optimal spacing of MPAs in a network is 

strongly influenced by the spatial scale of migration of the target species, and shaped by the 

physical environment, availability of suitable habitat, planktonic larval duration and behaviour, 

extent of the source population (Shanks et al. 2003, Gaines et al. 2010a, Krueck et al. 2017) 
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and MPA level of protection. Therefore, physical data such as habitat type and depth, 

oceanographic information (e.g. temperature, salinity, ocean currents) and biological data on 

larval dispersal distances for all target species, or groups of taxa with similar life cycles should 

be considered for a meaningful assessment of connectivity of networks of MPAs. 

 

  

 

Figure 1.5 Overview of the main criteria, associated sub-criteria and concepts commonly used in the 

literature to define coherent networks of MPAs in the Europe (modified from Wolters et al. 2015). 

 

 

 Four consensual criteria are used to assess ecological coherence of networks of MPAs 

at a European level: representativity, replication, adequacy and connectivity. 'Coherence' is 

then regarded as an all-embracing principle, comprising the four main criteria. 

 

 

1.5 Design and practical assessments of ecological coherence of networks of MPAs 

 

 Efficiently designed networks of MPAs cannot follow a single one-size-fits-all protocol. 

Different types of networks represent different goals and intended outcomes, and this should 

be considered when evaluating their performance (Grorud-Colvert et al. 2014). Networks of 

MPAs differ mainly in their spatial scale (from regional to local), their objectives and level of 

protection, ranging from broad conservation approaches, to the protection of specific 

ecosystems and restriction of explicit activities (Table 1.3). 
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Table 1.3 Examples of networks of MPAs, goals and criteria guiding its implementation and monitoring. 

 

Examples of MPA 
networks 

General network goals  Design guiding criteria 

    
 
Marine Natura 2000 

 
 
Produce a network of protected areas to 
safeguard biodiversity in Europe  

The Habitats Directive lists nine 
marine habitat types and 16 species 
for which marine site designation is 
required, whilst the Birds Directive 
lists a further 60 bird species whose 
conservation requires marine site 
protection 

 
OSPAR NE Atlantic 
MPA network 

 

Make a significant contribution to the 
sustainable use, protection and 
conservation of marine biodiversity 
across the North-East Atlantic, including 
in Areas Beyond National Jurisdiction 

 
Representativity, replication, 
connectivity and adequacy (and 
resilience)  

OSPAR High seas 
MPAs (areas beyond 
national jurisdiction) 

 
Protect vulnerable marine ecosystems 
(VMEs) from destructive bottom fishing 

 

Naturalness, practicality/feasibility, 
and biogeographic, ecological and 
scientific importance 

   
 
 
Great Barrier Reef 
(GBR) 

 

Provide for the long-term protection and 
conservation of the environment of the 
GBR ecosystem; its outstanding universal 
value and its transmission in good 
condition to future generations and 
allowing ecologically sustainable use 

 

Biodiversity (habitats and species) 
and ecosystem health (physical, 
chemical and ecological processes 
and terrestrial habitats that support 
the reef) 

 
 
 
California coast MPA 
network  

 

Protect the marine natural heritage, 
natural diversity and abundance of 
marine life, and the structure, function, 
and integrity of marine ecosystems; 
improving recreational, educational 
opportunities, and to manage these uses 
in a manner consistent with protecting 
biodiversity 

 
 

Representativity and replication of 
habitats in MPAs within a 
biogeographic region; size and 
spacing of MPAs to promote 
ecological connectivity  

 
Kimbe Bay, Papua 
New Guinea MPA 
Network 

 

Conserve marine biodiversity and natural 
resources (including a range of shallow 
water, deep water and island habitats), 
rare, vulnerable or threatened species 
and to address local marine resource 
management needs 

 

Biophysical design principles 
(representation, replication oh 
habitat types and vulnerable areas, 
connectivity) and socio-economic 
design principles 

 
West Hawai’i MPA 
Network 

 

Protect targeted species from aquarium 
fisheries; create fish 
replenishment areas, optimize coastal 
uses while meeting conservation targets 

 

Declare a minimum of 30 % of the 
West Hawai'i coastline as Fish 
Replenishment Areas, where 
aquarium fishing is prohibited 
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 Even though there is ample literature regarding suitable planning targets for the 

different criteria used in defining MPA ecological coherence, there are only few examples of 

comprehensive evaluations of the full network as a whole, considering all the established 

criteria. In the following paragraphs, I will focus on some of the most important efforts 

developed within the European context to evaluate ecological coherence within networks of 

MPAs; at a regional (NE Atlantic and Baltic Sea) and subregional level (Celtic seas) and describe 

the guidelines of an independent study commissioned by the EU to harmonise the 

methodology (Table 1.4 summarizes the major target and threshold levels currently used in 

European assessments, and includes examples at a global scale). Lastly, I reflect on the current 

status of the assessment of ecological coherence in Portuguese MPAs.  

 

 ❶ OSPAR Commission - The first comprehensive effort describing guidance on 

developing an ecologically coherent network came from the OSPAR Biodiversity Committee 

(Ardron 2008). The Convention depicted ecological coherence as a holistic and relative 

concept, which should be measured as a probability that objectives were being met. In 

practice, the network performance results should fluctuate from ‘very unlikely to be 

ecologically coherent’ to ‘very likely to be ecologically coherent’. This way, three major 

complementary approaches were developed to assess eco-coherence (Ardron 2008b), in an 

attempt to make use of available sources of information, balancing scientific rigor with political 

and administrative realities: 

1. Expert knowledge self-assessments checklist and a scoring system; 

2. Species-habitat tabular assessments against biogeographic region; 

3. Three spatial assessments based on GIS data and single measure approaches, to use in 

data-limited situations, with thresholds levels for spatial distribution, representation, and 

threatened and/or declining species and habitats. The first test was on how well the 

network was spatially distributed and recommended maximum distances between MPAs 

of 250, 500 and 1000 in the nearshore, offshore and high seas respectively. The second 

test measured if the network covered at least 3% of most (seven of the ten) relevant 

Dinter biogeographic provinces. Finally, the third test evaluated that most (70%) of the 

OSPAR threatened and/or declining habitats and species were represented in the network, 

such that at least 5% (or at least three sites) of all areas within each OSPAR region in which 

they occur was protected. 

 

 In 2013, an independent assessment was tasked to apply and extend the methodology 

of the three initial tests agreed upon by OSPAR (Johnson et al. 2014). Briefly, this assessment 
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concluded that, based on the agreed threshold distances, the OSPAR network of MPAs was not 

spatially well-distributed, with the vast majority of MPAs being situated in coastal waters (0–

75 m) and clustered around the North and Celtic sea. Regarding biogeographic representation 

and replication, the majority of biogeographic provinces surpassed the 3% threshold coverage. 

This assessment used data on Important Bird Areas as a proxy for assessing coverage of 

threatened/declining species and concluded that most of the offshore and high seas 

protection areas fell outside the OSPAR MPAs. Overall, this study concluded that in OSPAR 

Regions I (Arctic waters) and IV (Bay of Biscay and Iberian Coast) and large parts and depths of 

Region V (wider Atlantic) the network of MPAs was very unlikely to be ecologically coherent, 

while Regions II (Greater North Sea) and III (Celtic Sea) had a greater likelihood of being 

ecologically coherent. More recently, in the 2016 OSPAR status report (OSPAR 2016), the 

network was revaluated and still not considered ecologically coherent. Nevertheless, it showed 

consistent improvements in the geographical distribution of MPAs in OSPAR Region IV (Bay of 

Biscay and The Iberian Coast), while the Arctic region remained with considerable gaps. An 

important and unrealistic assumption made by the OSPAR assessment is that all species and 

habitats are fully protected within all MPA boundaries, which is certainly not the case.  

 

 ❷ HELCOM - In the recent Ecological Coherence Assessment of the Marine Protected 

Area network in the Baltic (HELCOM 2016), results showed a substantial overall protection of 

the Baltic Sea (aerial coverage of 12 %, the highest protection of all European marine regions). 

However, while representativity and replication were evaluated to be likely to have reached 

ecological coherence, adequacy was unlikely and connectivity very unlikely to fulfil the 

conservation goals of the MPA network. Therefore, the network was not considered 

ecologically coherent. However, when analysed together with marine Natura 2000 sites, the 

assessment reveals improved representativity, replication and connectivity.  

 

 ❸ Celtic Seas - A very recent study by (Foster et al. 2017) represents the first 

assessment of the ecological coherence of a network of MPAs at a subregional level, analysing 

a network of 533 MPAs across the Celtic Seas and focusing on broadscale habitats. According 

to the adopted thresholds the Celtic Seas MPA network as a whole is not ecologically coherent; 

although it meets the desired CBD 10% spatial coverage for MPAs and all MSFD predominant 

habitat types are adequately represented and replicated within the network.  

 

 ❹ European Commission - Recently, an independent study commissioned by the 

Directorate-General for the Environment (the European Commission department responsible 
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for EU policy on the environment) proposed an assessment method to harmonise the 

methodology for the evaluation of the coherence of the European networks of Marine 

Protected Areas (Wolters et al. 2015). The proposed method can be implemented and 

compared in different regions and scales across European seas, with heterogeneous ecological 

characteristics and data availability. With this method, all four main criteria (i.e. 

representativity, replication, connectivity and adequacy) must meet a minimum target level 

and the failure of a single one of the criteria results in a failure to reach ecological coherence. 

The assessment builds upon existing guidelines and involves a hierarchical approach 

depending mainly on the data availability. Basic assessments of ecological coherence can be 

achieved with GIS data on bathymetry, boundaries of the MPAs and territorial and exclusive 

economic zones, presence data of selected habitats, species and other features, and 

information on the protection level. A more detailed assessment can be accomplished using 

spatial data on habitat and species distribution and abundance, and main anthropogenic 

pressures. The process was tested in the central part of the Baltic Sea, and concluded that the 

network was unlikely to be ecologically coherent, as it failed to meet the targets for 

connectivity and representativity. 

 

 ❺ Portuguese MPAs assessment - A systematic ecological coherence assessment 

including all protected areas for the Portuguese territorial waters is missing, as well as the 

definition of threshold levels to achieve it. Recently, Abecasis et al. (2017) used benthic habitat 

classification as a surrogate and baseline to assess MPA coverage and ecological coherence of 

the network of MPAs for the coastal waters of Portugal. Using Marxan and MinPatch solutions, 

the authors analyzed three conservation targets suggested in the MPA literature (10%, 30% 

and 50% protection) and concluded that, although most MPAs were above the minimum 

ecological size threshold (5 km2), the average distance between them was larger than the 

optimal distance of 10 to 20 km spacing suggested by (Shanks et al. 2003).  

 

 One of the key messages shared by all described assessment guidelines and protocols 

is that the broad assessment of the ecological coherence of networks of MPAs is highly 

compromised by data limitations on the distribution of species and habitats across broad 

geographic areas. Also, that there is a need of improved information on the management 

status and protection levels across MPAs, and a need for consistency and agreement of 

scientific based targets. These limitations are probably the underlining reason why no network 

has been considered coherent so far. Still, the growing availability of large scale knowledge 
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and technology, mainly in species distribution, habitat and human impact mapping, is likely to 

promote and support the future progress in evaluating networks of MPAs. 

 

 Achieving ecological coherence relies on the network of MPA sites meeting a number 

of different criteria. Different target levels have been used in the design of coherent network 

of MPAs worldwide, depending mostly on data availability, quality and local requirements. 

 

 

1.6 Challenges and limitations in assessing ecological coherence of networks of MPAs 

 

 Reaching full ecological coherence implies having enough data to evaluate the 

interaction of different ecosystem components, structures and processes over wide spaces, to 

maintain a productive and healthy marine ecosystem. Hence, absolute “coherency” 

assessment remains on the theoretical realm.  

 Apart from the ecological criteria discussed above, many factors can influence and 

restrain the coherence of the network. The first has to do with data quality, consistency and 

coverage. Regional assessments require a large amount and availability of data on substrate 

type, species distribution and ecological traits for a multiple range of functional groups, across 

multiple countries. Using broad scale data might misrepresent ecologically relevant processes 

at finer scales, and influence whether the “coherence” is accomplished at finer (national) or 

broader (European regions) scale.  

 An additional factor has to do with the fact that single MPAs and networks of MPAs 

are designated for different purposes, from a broad socio-ecological approach to specific 

species or habitats protection. This way, individual MPAs within the network may be designed 

for different purposes and managed under dissimilar strategies, and thus complicating the 

coherence assessment in multiple sites.  A relevant example of these two constraints is the 

European Natura 2000 Marine Sites, which are selected and managed on a species/habitat 

specific level, with a strict selection of species and habitats. This has great implications for the 

assessment of the coherence of the network as a whole. So, the assessment of coherency 

requires the integration of those species/habitats listed in the respective habitats annexes, as 

well as the “full range of ecosystems, including the biotic and habitat diversity of those marine 

ecosystems’ (CBD 2008).  

 Given that all criteria to assess coherence is closely linked with the level of protection 

enforced inside the networks, some policy guidelines (e.g. Wolters et al. 2015) highlight the 

need to include “level of protection” when assessing ecological coherence of networks of 
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MPAs. Also important is the need for cooperation in planning and assessing MPA designations 

at a regional and subregional scale, toward transboundary agreements to protect marine 

biodiversity in shared marine areas. Therefore, even well thought, planned networks, 

theoretically fulfilling all ecological criteria, cannot grant conservation benefits if they are not 

sustained by adequate monitoring, management and effective enforcement on the ground 

(Pollnac et al. 2010). In fact, a recent study, Gill et al. (2017) concluded that whilst ecological 

inputs are important to determine MPA performance, investment in human and financial 

capacity are fundamental for effective protected area management. Furthermore, Kuempel et 

al. (2016) argued that limited funds should be disproportionately invested in enforcement 

rather than expansion of conservation areas.  

 Poor management, lack of incentives, insufficient protection levels and sectorial 

conflicts can transform good conservation intentions into a false sense of protection of marine 

ecosystems. The emergence of these “Paper parks” (Rife et al. 2013) can also be fuelled by 

political pressures to achieve international percentage-based targets, such as the CBD target to 

protect 10% of the ocean until 2020. Thus, and although percentage targets are a quantifiable 

simple metric chosen by the international community to communicate and promote 

conservation action, they are not a real measure of conservation success (Pressey et al. 2015). 

This is a delicate subject, given that area targets are easily quantifiable while management 

effectiveness is harder to measure. In this sense, the IUCN World Commission on Protected 

Areas approved in November 2017, a programme to enhance and distinguish effectively and 

equitably managed protected areas (IUCN Green List). Its mission is to ensure robust and 

impartial decisions based on expert judgment and verification of good governance, sound 

design, planning and effective management. 

 Lastly, even well managed ecologically coherent networks of protected areas will not 

fully sustain ecosystem protection and sustainable exploitation in marine ecosystems. 

Mitigating global threats also requires the adoption of management tools which secure 

protection outside MPA boundaries, alleviating pollution and promoting the sustainable 

development of human populations (Keller et al. 2009). 

 

 Many factors can influence and restrain the coherence of the network, mainly: poor 

data quality, the geographical scale of the assessment, the network levels of protection, poor 

monitoring, management and enforcement strategies, sectorial conflicts and lack of incentives 

and protection outside MPAs’ boundaries. 
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Table 1.4 Summary of the major target and threshold levels used for the different criteria related to the assessment of coherent network of MPAs. The table focus at the 

European level, but shows examples of other metrics used worldwide and for different regions and ecosystems. 

Main 
criteria  

OSPAR 2007 HELCOM 2016 
Celtic Seas MPA 
network  

Independent 
study requested 
by the DGE 
(Wolters et al. 
2015) 

Others 

      

Representa_ 
tivity 

 
 
 
 
 
Within each OSPAR biogeographic 
region, it is recommended that 
the OSPAR MPA network   covers 
at least 3% of most (seven out 
of ten) relevant Dinter provinces   

• <20% coverage = 
inadequate protection; 
• 20-60% coverage = 
adequate protection of 
common habitats; 
• >60% coverage = 
adequate protection of 
rare habitats. 
≥10% of the total Baltic 
Sea shall be protected, as 
well as each sub-basin 
and the coastal sea, outer 
coastal sea and open sea 
zones 
 

 
 
10% of coastal and 
marine areas; 
At least 3% of most 
of the relevant Dinter 
biogeographic 
provinces in the 
study area; 
Minimum patch size 

of 0.24 km2 

 
 
 
 
 
Subregions 10 % 
Depth zones 10 % 
Habitats 20 or 40 % 
Species 20  or 40 % 

 
 
 
IUCN (2003) - At least 20-30% of each habitat 
should be included within the network.  
Barcelona Convention - In the Mediterranean, 
representativity of the most iconic or rare 
features (tentative target of 10%).                                                                                                                            
Great Barrier Reef Marine Park (GBRMP) - 
minimum threshold of 20% of each bioregion to 
be protected within no-take zones 

Replication 

 
Within each OSPAR biogeographic 
region, it is recommended that at 
least two MPAs for each EUNIS 
level 3 habitat be selected; for 
threatened and declining habitats 
and species, three replicate sites 
per biogeographic region is 
recommended 
 

 
A minimum of 3 
replicates (of marker 
species, biotope 
complexes and benthic 
marine landscapes) 
within the HELCOM MPA 
network 

 
Replication 
thresholds:  
low (replication of 
habitat in 0- 2 MPAs),  
moderate (3- 5 
MPAs), high (≥6 
MPAs) 

 
 
 
2 or 4 replicates 
of sites/features 

 
IUCN-WCPA (2008 )- at least three replicates per 
habitat type are included in the network;                                                                                                                                                                                                                                                                      
GBRMP- three to four replicates of no take zones 
for each bioregion (Fernandes et al. 2005); 
Irish Sea - habitats should be replicated in at 
least three protected areas spread throughout 
the Irish Sea (Roberts et al. 2003)        
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Connectivity 

 
 
Recommendations for gaps 
between MPAs: 
Nearshore/Coastline - no gaps 
wider than 250 km 
and no more than 10 gaps 
• Offshore - no gaps greater than 
a 500 km diameter circle (~200 

000 km2) and no more than five 

gaps 
• High Seas - no gaps greater than 

a 1000 km square (1 000 000 km2) 

and no more than two gaps 

 
 
 
50% of landscape patches 
should have ≥20 
connections at the given 
dispersal distance; 50% of 
landscape patches 
representing habitats for 
the species should have 
≥20 connections at the 
given dispersal distance 

 
 
 
 
 
 
 
40 km buffer around 
MPAs 

 
Between sites: 50 
% of sites have 
≥10 connections 
at 20 or 50 km 
distance (the 
distance is an 
average for 
mobile species)  
Between features: 
50 % of feature 
occurrences have 
≥20 connections 
at 20 or 50 km 
distance  
 

 
Shanks et al. (2003) - spacing of 10 to 20 km for 
species with medium pelagic larval durations.                                                                                                                                                          
IUCN-WCPA (2008) - spacing of 10 to 20 km up to 
50 to 100 km between individual MPAs and 
recommends variable spacing, as opposed to 
even spacing.   
McLeod et al. (2009) - 15 to 20 km distance 
threshold between MPAs.     
Gaines et al. (2010) - 10 to 100 km distance 
between protected areas.    
Roberts et al. (2003) - sites in the network 
supporting similar habitats should be no more 
than 40 to 80 km apart 

Adequacy          

 
Within each OSPAR biogeographic 
region, it is recommended that 
the OSPAR MPA network contains 
between 10-20% of each EUNIS 
level 3 habitats and between 20% 
to 60% of the total extent of each 
OSPAR threatened and declining 
habitat. The sizes of network sites 
(for a given feature) should be 
distributed throughout, or 
exceed, the estimated range of 
sizes necessary to sustain a viable 
population or community for 
those species listed as threatened 
and/or declining 

 
 
 
 
 
 
 
80% of marine sites 
should be ≥ 30 km² 

20–30% of each 
habitat; 
Recommended size 
10–100 km²; 
Habitat patch size 
classes: 
 0–1 km² (sessile or 
very limited mobility 
species),  
1–10 km² (low 
mobility),  
10–50 km² (medium 
mobility),  
50–100 km² (highly 
mobile),  
>100 km² (very highly 
mobile) 

 
 
 
 
Size: 75 % sites 
are >20 km² or  
>30 km2  
Protection level: 
30 % or 40 % of 
sites are strictly 
protected  

GBRMP - a minimum 20 km radius for no-take 
zones (Fernandes et al. 2005).  
Total MPA area that should be protected within 
a network: >35% (Botsford et al. 2001); 40% ( 
Sala et al. 2002); 30 - 50% (Airamé et al. 2003b); 
20 - 50% (Roberts et al. 2003); <50% (Halpern 
and Warner 2002); 20 - 30% (McLeod et al. 2009)  
New Zealand MPAs should have a minimum 
coastline length of 5-10 km, preferably 10-20 km, 
and should extend along the depth gradient from 
intertidal to deeper offshore waters, preferably 
to the 12 nautical mile limit. MPAs, with similar 
habitats should be placed within 50-100 km of 
each other (Thomas and Shears 2013). California  
preferred MPA size range 47 to 93 km2 (Saarman 
et al. 2013) 
                                                                                                                                                                                                                                                                                                                  

Ecologically
Coherent? 

No No No 
No  

(case study - central 
part of the Baltic Sea) 
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Abstract 

 

Connectivity in the marine environment is crucial for understanding the spatial structure of 

populations and for developing appropriate monitoring and management strategies. Here, we 

used the mussel Mytilus galloprovincialis as a model species to investigate connectivity 

patterns within the Berlengas and Arrábida Marine Protected Areas (MPAs) along the central 

Portuguese west coast. We generated an atlas of location-specific environmental markers 

based on the microchemistry of bivalve larval shells (using laser ablation inductively coupled 

plasma mass spectrometry). This atlas was then employed to trace back natal origins of newly 

settled mussels and generate connectivity matrices among populations. Our results reflected 

three distinctive chemical signatures in larval shells, corresponding to 3 regions: Estremadura, 

Cascais and Arrábida. Linear discriminant analyses allowed for a high reclassification success 

(average of 79.5% of jackknifed cross-validated cases correctly assigned) based on 8 of the 16 

trace elements analyzed (B, P, Co, Cu, Zn, Ce, Pb and U). The population connectivity matrix 

identified different dispersal pathways for mussel larvae, in particular a predominantly 

northward dispersion pattern in July 2013. This pattern was consistent with simultaneous 

environmental physical data, which confirmed an extended period of wind reversal and 

upwelling relaxation. The Arrábida MPA was an important source population for the other two 

regions and showed high rates of self-recruitment but limited connectivity to the Berlengas 

MPA. These direct measures of demographic connectivity can be a powerful tool to inform 

policymakers on the conservation and management of ecological coherent networks of 

protected areas in coastal marine ecosystems. 

 

Keywords: natal site atlas, Mytilus, elemental composition, LA-ICPMS, connectivity 
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2.1 Introduction 

 

 Measuring the spatial extent over which marine subpopulations are connected by 

larval dispersal is a fundamental issue in marine metapopulation studies (Pineda et al. 2007) 

and in defining the relevant spatial scales for area-based conservation measures (Gaines et al. 

2010). Evidence from various fields such as physical oceanography, biophysical modelling, 

molecular genetics and the geochemistry of site-specific natural tags have been used to 

quantify connectivity at different spatial and temporal scales. Indeed, natural tags, such as the 

geochemical composition of calcified structures of marine organisms are increasingly being 

employed as a strategic tool in marine research. These naturally induced marks have been 

commonly used in paleo-environmental research in coral skeletons (Mitsuguchi et al. 1996), 

foraminiferal shells (Keul et al. 2013) and ostracod shells (Börner et al. 2013). More recently, 

they have been applied to determine natal signatures and dispersal patterns, using crustacean 

embryos and larvae (DiBacco and Levin 2000, Carson 2010), fish otoliths (e.g. Swearer et al. 

1999), larval mollusk statoliths (Zacherl et al. 2005) and shells (e.g. Becker et al. 2007, Carson 

2010). This method requires not only the existence of location-specific chemical signatures at 

the site of origin and the maintenance of these ‘‘natal tags’’ after settlement (Thorrold et al. 

2007). Both physical and biological properties of the marine environment can influence the 

incorporation of such chemical signatures in biogenic carbonates at spatial scales over which 

they allow discrimination among natal sites (Campana 1999). Yet, the lack of a clear 

relationship between seawater chemistry and elemental composition of calcified structures 

(Campana and Thorrold 2001, Warner et al. 2005) might also reflect genetic (Chittaro et al. 

2006) and/or maternal (Lloyd et al. 2008) effects on elemental signatures.  

 Assembling regional chemical reference maps of natal origins based on geographical 

differences in biogenic carbonate chemistry can be used as a tracking method (Becker et al. 

2007). However, in order to successfully set up a suitable natal site atlas, it is crucial to 

consider not only the larval life history and potential dispersal scales, but also the local 

geology, anthropogenic pressures, and oceanography of the study region (Miller et al. 2013). 

This approach has already led to important progress in our understanding of metapopulation 

connectivity in coral reef ecosystems (Swearer et al. 1999, Chittaro and Hogan 2012), estuarine 

areas (Swearer et al. 2003, Carson et al. 2010), and open coast environments (Warner et al. 

2005, Becker et al. 2007, Cook et al. 2014). Although the dispersal of planktonic larvae of 

benthic invertebrates has been studied systematically, the specific link between small-scale 

coastal geography and larval supply is less well resolved (Adams et al 2014). In the eastern 

boundary of upwelling systems, sinuous coastlines and topographic features, such as the 
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presence of capes and associated bays, can influence the degree of population connectivity, 

through interactions between regional upwelling/downwelling processes and local-scale 

topography (Siegel et al 2008). Elemental fingerprinting is increasingly being applied to 

understand connectivity patterns in complex environments given its potential to detect not 

only bay-open coast dispersal patterns (Becker et al. 2007, Sorte et al. 2013, Carson 2010) but 

also along-shore interchanges between populations in upwelling systems (López-Duarte et al. 

2012).  

 Coastal upwelling systems around the world have been extensively studied because of 

their high productivity and the physical mechanisms involved in along- and cross-shore larval 

transport (Roughgarden et al. 1988, Wing et al. 1995, Shanks and Brink 2005, Narvaez et al. 

2006, Morgan et al. 2009). In the western Iberia upwelling ecosystem several studies have 

highlighted the importance of variability in the frequency and intensity of upwelling episodes 

to larval dispersal and recruitment of a diversity of invertebrate species (Queiroga et al. 2007, 

Peteiro et al. 2012, Nolasco et al. 2013). However, large scale studies on invertebrate larval 

dispersal pathways remain in the dominion of simulation modelling (Domingues et al. 2012, 

Nolasco et al. 2013), and might not reflect local scale connectivity patterns. Small scale 

topographic features can influence the degree of population connectivity, by generating 

different hydrodynamic stress amongst open coasts and protected embayments (Nicastro et 

al. 2008, Carson 2010). 

 Present theoretical frameworks and binding agendas at international (Convention on 

Biological Diversity) and European (OSPAR Commission, Marine Strategy Framework Directive) 

levels are advocating for the establishment of ecologically coherent MPA networks by 2020. 

Population connectivity is one of the four assessment criteria proposed to evaluate the degree 

of ecological coherence of systems of protected areas (Ardron 2008), with important 

implications for the persistence and resilience of metapopulations (Botsford et al. 2010). In 

Portugal, however, an estimate of population connectivity among MPAs is yet to be 

accomplished. Therefore, regional-specific scientific input on ecological patterns of 

connectivity, operating at a suitable temporal and spatial scale is crucial, if we are to deliver 

effective outcomes to established conservation policy targets. Here we focus on the central 

west coast of Portugal, which encompasses two Marine Protected Areas included in the 

European ecological network of protected areas Natura 2000. Although both MPAs in this 

study were initially established in a broad biodiversity conservation and fishery management 

context, single-species quantitative measurements of connectivity are important to identify 

the best range of reserve spacing which can maximize benefits for marine larvae with potential 

large-scale dispersal among habitat patches. Mytilus galloprovincialis has been largely 
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employed as a model species to study connectivity patterns between subpopulations because 

of its broad distribution and its function as an ecosystem engineer (Becker et al. 2007, Fodrie 

et al. 2011, López-Duarte et al. 2012). Our objective was to determine the spatial resolution of 

geochemical signatures in Mytilus galloprovincialis larval shells to reveal connectivity patterns 

between MPAs and adjacent areas. The complex topography of the coastline, characterized by 

prominent capes, bays and estuaries, represent an interesting setting for microchemistry-

based investigations.  

 Natural tags were investigated in a snapshot manner in summer 2013, using a large 

scale and short-term static atlas of elemental variability in mytilid larval shells. This reference 

map was employed to reconstruct the natal origin of newly settled mussels, under complex 

circulation patterns during the typical spring–summer upwelling season when northerly winds 

off Western Iberia usually prevail and cause upwelling of cold and nutrient rich waters (Relvas 

et al. 2007). We further integrate and compare the results with simultaneous environmental 

physical data, to assess whether the patterns we observed (geochemical fingerprints and 

dispersal pathways) were consistent with trace elemental composition, oceanography and 

hydrographic conditions of the area. Our results confirm the feasibility of the technique to 

accurately quantify self-recruitment and connectivity among MPAs, at ecologically relevant 

scales, within the complex coastal topography and bathymetry of the central Portuguese west 

coast. 

 

2.2 Material and Methods 

 

 2.2.1 Species description 

 In Europe, the Mediterranean mussel (Mytilus galloprovincialis, Lamarck 1819) is 

distributed throughout the Mediterranean and along the Atlantic coast as far north as north-

western Ireland (Gardner 1992). It was chosen as a model species as it is widely distributed in 

temperate marine rocky shores, making it particularly suitable to assess environmental-related 

signatures. Also, as an important structural component of rocky intertidal ecosystems, mussels 

play a key role as ecosystem engineers; increasing microhabitat complexity, environmental 

heterogeneity and benthic species richness with significant influence at the ecosystem-level 

(Borthagaray and Carranza 2007). Along the central coast of Portugal, mussels are subjected to 

an informal traditional fishery, depending largely on site accessibility, to supplement diet, for 

commerce or bait (Rius and Cabral 2004).  

 As broadcast-spawning invertebrates, fertilization occurs in the water column leading 

to a series of free-swimming planktotrophic larval stages (Bayne 1976). Shell mineralization 
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starts ≈20h after fertilization forming prodissoconch I which enlarges until the trochophore is 

completely enfolded forming the D-veliger (24-48h after fertilization; Ruiz et al. 2008). Primary 

settlement sets the beginning of the juvenile form, and occurs when pediveliger larvae 

metamorphose and selectively anchor onto benthic surfaces by secreting byssal threads. The 

final step of settlement in bivalves is manifested after metamorphosis by a change in shell 

morphology and composition, with a differentiation of the prodissoconch (larval shell) and the 

dissoconch (benthic shell). Although planktonic larval development and duration (PLD) are 

strongly dependent on temperature and food availability, M. galloprovincialis larvae stay in the 

plankton for ≈2-4 weeks (Ruiz et al. 2008), with the possibility to delay metamorphosis if 

suitable settlement substrates are not available (Chicharo and Chıcharo 2000). Philippart et al. 

(2012) investigated the presence of mytilid larvae in European coastal waters as a proxy for 

time of reproduction and reported a seasonal pattern for the Iberian Coast with one major 

peak in spring and a less significant peak during the fall.  

 

 2.2.2 Area description 

 The study was carried out on rocky shores along the Portuguese central continental 

coast, an area delimited in the north and south by long sandy shores. This region incorporates 

major three-dimensional variations in coastline orientation and bathymetry (capes, bays and 

large estuaries) and its oceanography is complex, with recurrent wind stress variation and 

strong upwelling/downwelling seasonality (Relvas et al. 2007). Initially, and based on the 

coastal topography and oceanography, we have considered four main regions along the 

central west Portuguese coast. We separated northern and southern Estremadura branches, 

divided by the Peniche peninsula (Cape Carvoeiro) and delimited in the south by Cape Roca 

(Fig. 2.1). In Cape Carvoeiro, there are strong and recurrent wind stress variations, filament 

formation and separated coastal jets, suggesting the presence of recirculation cells, 

downstream of the capes (Oliveira et al. 2009). Cascais Bay and Arrábida Bay represent 

important discontinuities along the central Iberian west coast, more sheltered from upwelling 

prevalent winds, and under direct influence from two major estuaries (the Tagus and the 

Sado), whose basins drain heavy industrialized areas of Portugal.  

 The study area encompasses two Marine Protected Areas included in the Natura 2000 

network. In Estremadura, the Berlengas Marine reserve is a coastal archipelago comprising 

three major islands, small islets and reefs. Arrábida Marine Park expands along 38 km of 

coastline, from just north of Cape Espichel to the mouth of the Sado estuary (Fig. 2.1). 
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Figure 2.1 Map of larval incubation stations, juvenile sampling sites and location of Marine Protected 

Areas (MPAs). Estremadura North: Berlengas, Peniche and Foz do Arelho; Estremadura South: Porto 

Novo, Samarra, Maças; Cascais: Cabo Raso, Bafureira and Arrábida: Cabo Espichel, Cova da Mijona, 

Alpertuche. The final regions used to discriminate among natal regions were Estremadura (all moorings 

located north of Cape Roca), Cascais and Arrábida. For better visualization purposes, moorings in the 

map are illustrated more offshore than in the field (deployed at a depth of approx. 15-20m). 

 

 2.2.3 Mussel spawning and in situ larvae incubation 

 M. galloprovincialis wild adults were collected from the Costa Nova Naval Club pier 

(Aveiro, Portugal) in early June 2013, and were thoroughly cleaned and stocked dry at 4°C. 

Spawning was induced the following day by exposing the mussels to cyclic thermal stimulation 

(20 min at 25°C heated artificial seawater, followed by 20 min at 4°C) and spawning individuals 
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were confined to separate glass jars in order to collect the gametes independently. Eggs and 

sperm were filtered through a 125 μm sieve and transferred separately to 250ml glass 

cylinders for quality check under a microscope. A small volume of the sperm solution (< 10ml) 

was added to the egg suspension and carefully stirred to allow fertilisation. After 15 min the 

mixture was filtered using a 40 μm sieve to remove excess sperm. Egg concentrations ranged 

from 350-1000 per ml. All tools, containers and pipettes were non metallic and subjected to 

acid leaching (50% v/v MΩ HCl 37%, HCl fuming 37% Emsure® grade, Merck, Germany) for 

24hours, rinsed three times in Milli-Q water (Milli-Q 18MΩ ) and dried in a laminar flow 

chamber. 

 We followed the Becker et al. (2007) protocol for in situ larval incubation and used 

25cm PVC pipe (500 ml inner volume) as larval incubators, with 41μm nitex mesh caps on each 

end. These incubators were washed in advance with Extran MA 03® 5% phosphate-free 

detergent for 1 day, leached in reverse osmosis water for 3 weeks (changing the water every 1-

3 days) and acid-leached. Around 18000-20000 larvae (no shell, multi-celled embryos with less 

than 12h development) were split to each incubator and transported inside large buckets filled 

with artificial sea water to the incubation sites. All incubators were deployed in the water less 

than 12h after fertilization. Simultaneously, and in order to test for incubator effects on larval 

shell chemical signatures, we also reared larvae in the laboratory: two cultures loose in 

buckets and two cultures inside incubators. The cultures were fed Isochrysis sp. every two days 

and allowed to grow for seven days. 

 Eleven sites were selected in the central part of the Western Portuguese margin, 

offshore of known source of adult mytilid mussel populations. Along the very exposed coast, 

three sites (Foz do Arelho, Peniche and Berlengas) were located north, and three sites (Porto 

Novo, Samarra and Maçãs) south of Peniche. Two sites were situated in Cascais (Cabo Raso 

and Bafureira), and three along the Arrábida (Cabo Espichel, Cova da Mijona and Alpertuche) 

(Fig. 2.1). On the 4th and 5th of June 2013, two to three larvae incubators were deployed at 

each site, at a depth of approximately 3 to 5 meters, attached to a polypropylene cable that 

connected a signalling buoy to a concrete anchor block. Moorings were placed in 15-20 m of 

water and the buoys kept submersed (around 1.5m) to minimize theft and conflict with local 

fishers. One mooring, at Maçãs, was lost. The incubators were retrieved after six days in the 

water and were immediately filtered using local seawater, stored in acid-washed 120ml 

containers and frozen at -20°C. This period allowed for larval shell development under 

exposure to local physical and chemical environmental conditions. 

 Early settlers of M. galloprovincialis were collected between 23rd and 25th July of 2013, 

approximately 43 days after the in situ incubation experiment to match the same planktonic 
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development period as the incubated larvae. Three replicates of turf-forming algae were 

collected at 13 sites (Fig 2.1) along the intertidal zone, inshore of the incubator deployment 

sites. Individuals < 1.5 mm in length were sorted in acid-washed glass petri-dishes under 

illuminated magnifying lenses, using Milli Q water and Teflon coated extra fine forceps. 

Samples were frozen (-20°C) in acid-washed eppendorf vials.  

 

 2.2.4 Mytilid larval and juvenile shell extraction and cleaning  

 All shells prepared for geochemical analysis were processed using non-metallic acid-

washed equipment, ultrapure reagents and Milli-Q water (reagents of certified trace metal 

purity 30% H2O2, 99% NaOH and 60% HNO3 of Suprapur® grade, and HCl fuming 37% Emsure® 

grade, Merck, Germany). Larval shells were handled under a dissecting microscope, using the 

tip of a thin paintbrush. Complete shells were selected, separated and carefully placed in Milli-

Q water drops. Shells were then transferred into cleaning solution droplets (15% H2O2 

buffered with 0.1 N NaOH) for 10 minutes, to remove all organic material, and rinsed 3 times 

in Milli-Q water, gently swiping the paintbrush in clean Milli-Q water in between relocations. 

Larval shells were transferred onto a gridded microscope slide that had been precoated with a 

thin layer of resin (Buehler’s Epo-Thin™) and were embedded in a small bit of resin, using a 

fibre paintbrush bristle, to spread it over and around the larval shells, so that they were lying 

flat on the slide. Juvenile shells were prepared using the same methodology, but the valves 

were manually opened and split using the paintbrush after spending 15 minutes in the 

cleaning solution (heated in 60°C hot water bath). Shell length (larval and juvenile) was 

measured before embedding the samples onto resin (Buehler’s Epo-Thin™) coated gridded 

microscope slides. Juvenile shells were positioned with the umbo facing upward. 

 

 2.2.5 LA-ICPMS analysis  

 Concentrations of trace elements in mytilid shells were determined using on an Agilent 

7700 Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) coupled to a HelEx (Laurin 

Technic and the Australian National University) laser ablation (LA) system with a 193nm 

Compex 110 (Lambda Physik) excimer laser. Random blocks of 18 samples each were run to 

avoid possible bias due to short-term instrument drift. Each block of samples was bracketed by 

runs of calibration standards spiked with trace elements (National Institute of Standards and 

Technology NIST 610 and 612) and a matrix-matched consistency standard MACS-3 USGS (U.S. 

Geological Survey MACS-3) for estimating external analytical precision (%RSD) (Table 2.1). Prior 

to each standard and sample analysis a 30 seconds blank was acquired to correct for 

background noise as to estimate the limits of detection of the method (Table 2.1). Both larval 
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and juvenile shell microchemical composition was analysed individually using single spot laser 

ablation (single crater; laser beam diameter = 32 μm, laser energy = 60 mJ, laser repetition rate 

= 5 Hz). Newly recruited juvenile shells were ablated in the umbo region of the early 

prodissoconch (larval shell). The elements acquired were: 7Li, 11B, 24Mg, 31P, 34S, 39K, 43Ca 55Mn, 

59Co, 63Cu, 66Zn, 88Sr, 111Cd, 140Ce, 208Pb and 238U. For the larval samples, we only considered the 

readings which had at least 60000 counts of Ca, since many elements were below the 

detection limit of the method for samples with lower yields. For juvenile samples, and given 

the small size and orientation of the prodissoconch in the horizontal position of the shell, we 

restricted the data integration to include only the scans for the first two seconds of sample 

ablation. This was done to minimize contamination of the natal habitat signature as the laser 

burned through the early larval shell and into the underlying late-stage larval and juvenile shell 

(Strasser et al. 2007). This could be a potential problem with larvae that may spent only a short 

time at their natal location, influenced by strong currents or upwelling events, such as the area 

characterized in this study. Data were post-processed to remove any spikes (single scan values 

greater than two times the median of three adjacent scans) and smoothed (using a running 

average of 3 scans) to reduce the noise due to analytical imprecision. Standards and samples 

were blank subtracted and the abundance of trace elements standardized to molar ratios 

relative to calcium, to account for differences in the amount of ablated material. 
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Table 2.1 Detection limits (DL), percentages of samples above DL and precision estimates (% relative 

standard deviation, RSD) for the LA-ICPMS analysis of the larvae and juvenile shells. DL based on the 

blank analyses (18 per block of samples) and expressed in molar ratios relative to mean Ca 

concentration in a sample. External precision estimates based on %RSD using standards that most 

closely approximated the concentration of each element in a sample (MACS-3 used for all elements 

except for K and U, where NIST 612 was used). 

 

Element DL mol Ca-1 
% above 

DL 
%RSD 

Li 10.49227 (×10–6) 27 5.1503 

B 0.08156 (×10–3) 71 13.4084 

Mg 0.00702 (×10–3) 100 3.1578 

P 0.17119 (×10–3) 92 7.452 

S 0.96897 (×10–3) 82 7.5643 

K 0.09088 (×10–3) 93 12.4534 

Mn 2.24422 (×10–6) 59 2.5061 

Co 0.55398 (×10–6) 17 6.8978 

Cu 1.5772 (×10–6) 85 7.006 

Zn 0.00317 (×10–6) 100 7.8005 

Sr 0.00412 (×10–3) 100 4.3558 

Cd 0.07271 (×10–6) 41 5.6593 

Ba 0.00044 (×10–6) 100 3.6053 

Ce 0 100 4.5512 

Pb 0 100 7.0967 

U 0.00003 (×10–6) 100 2.6832 
 

 

 2.2.6 Environmental Data 

 A Daily Upwelling index at Cabo de Roca (UI; m3s-1km-1) was calculated from the 6-

hourly data available (from the 1st June to 31st July 2013) by the Spanish Institute of 

Oceanography (Instituto Español de Oceanografía http://www.indicedeafloramiento.ieo.es). 

This index is calculated according to Lavín et al. (1991) for the Iberian Peninsula and using sea 

level pressure of the Meteogalicia WRF atmospheric model 

(http://www.meteogalicia.es/modelos). Daily Sea Surface Temperature (SST; °C) was averaged 

for each region (Estremadura, Cascais and Arrábida) from data provided by the HYCOM model 

(http://www.hycom.org) using the same configuration of Nolasco et al. (2013) with a 3 km 

resolution. HYCOM is a community ocean model which utilizes generalized vertical coordinates 

(Bleck 2002). Daily chlorophyll-a concentration for each region was averaged from Chl-a (mg. 

m-3) maps derived from MODIS data obtained from the Goddard’s Space Flight Centre ocean 

colour data archive (NASA Goddard Space Flight Center, 2014). 

http://www.indicedeafloramiento.ieo.es/
http://www.meteogalicia.es/modelos
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=271829&_issn=03770265&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.hycom.org%252F
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 2.2.7 Statistical Analysis 

 We started by analysing for any incubator effects on trace element concentrations in 

the larval shells raised at the laboratory using one-way ANOVA. Data were transformed 

(log+0.01 for all element ratios, but 31P:43Ca which was 4th root transformed) in order to 

accomplish normality and homoscedasticity. Since a significant increase in concentration was 

found for ten trace elements in larval shells reared inside incubators, we proportionally 

subtracted that effect from the signatures of the larvae cultured in the field. We then 

performed a linear Discriminant Function Analysis (DFA) on the resulting element ratios 

(X:43Ca) to test the discrimination capability of multi-elemental fingerprints in larval shells 

among regions (Estremadura North, Estremadura South, Cascais, Arrábida). An analysis on 

geochemical differences among sites was not possible due to the small sample size at the site 

level. A forward stepwise analysis was employed to select the elements to build the 

discriminant functions (F to enter=1.5) and prior probabilities were computed taken into 

account group sizes. Reclassification success was evaluated using a jack-knifed classification 

matrix. A randomization method (White and Ruttenberg 2007) was used to assign p-values to 

jack-knifed reclassification success estimates and standardized canonical discriminant function 

coefficients were evaluated to assess the relative contribution of each trace element in 

calculating group assignment.  

 One-way ANOVAs followed by post-hoc Tukey tests were performed to test the effect 

of region on the concentration of the element ratios introduced in the LDA functions. To 

determine whether our sampling effort was sufficient to capture variability within the 3 

regions, based on Simmonds et al. (2014), we carried out linear discriminant function analysis 

using Monte Carlo cross-validation over different subsets of the data set (100%; 90%; 80%; 

70% and 50% of the data) as implemented in the mlr library (Bischl et al. 2016) of R 3.2.5 (R 

Core Team, 2016 https://www.R-project.org). For each fraction of the original data set we 

performed 1000 iterations where data were randomly selected and misclassification error 

calculated.   

 The larval shell discriminant function analysis was then used as a training set to assign 

recruits to natal origin. When assigning recruits to a natal source, DFA assumes all individuals 

to have originated from one of the three regions provided in the training dataset. As we did 

not sample all potential source populations, we assumed a conservative approach that any 

recruit assigned to a specific natal region with a probability of group membership <0.90 had an 

“unknown” origin. Finally, we calculated dispersal distance and direction for each successfully 

assigned individual (dispersal distance range were calculated from the collection site to the 

https://www.r-project.org/
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nearest and furthest point inside the natal region). We considered self-recruits all individuals 

estimated to have settled into the same region where spawning took place.  

 

2.3 Results 

 

 2.3.1 Larvae incubation and creation of an atlas of natal signatures 

 In situ mussel larval incubations yielded larval shells entirely formed at known 

locations, but survival rates inside the incubators were very low (<1%). The small size and 

fragility of the shells resulted in additional sample loss during shell extraction and cleaning. 

Sample numbers and average shell width (± 1 standard error) were: Estremadura North n=21, 

115.6 μm ± 3.8; Estremadura South n=11, 92.8 μm ± 3.3; Cascais n=15, 116.9 μm ± 5.7 and 

Arrábida n=16, 97.8 μm ± 5.8. The larval shells of M. galloprovincialis showed differences in 

geochemistry that allowed us to separate them using linear discriminant function analysis. 

Grouping the incubated larval shells by site resulted in low accuracy of assignment (average of 

43.7% of cross-validated cases correctly classified). The assignment accuracy increased at the 

regional level (Estremadura North, Estremadura South, Cascais and Arrábida regions), with an 

average of 68.3% of cross-validated cases correctly classified (Fig. 2.2A, Table 2.2). However, 

Estremadura North and Estremadura South regional-specific geochemical signatures showed 

linear discriminant scatterplots with overlapping group centroids (Fig. 2.2A, Functions 1 and 2 

of group centroids = -1.5, 0.4 and -1.4 and 0.4, respectively) with low (40%) cross-validated 

classification success in the Estremadura South region (Table 2.2). Therefore we decided to 

combine both locations into one single open coast region (Estremadura) and rerun the LDA 

(Fig. 2.2B). The resulting cross-validated classification success increased to 79.5% (Table 2.2), 

significantly higher than the 33.0% expected by chance alone (p = 0.0002, White and 

Ruttenberg 2007). All the subsequent analyses were performed using three natal source 

regions- Estremadura, Cascais and Arrábida. 

 Classification accuracy was highest for larvae incubated in the Estremadura region 

(90.6%) while larvae reared in Cascais had the lowest classification accuracy (60.0%, Table 2.2).  
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Figure 2.2 Canonical score plots of the linear discriminant function (LDF) analyses for incubated larval 

shells of M. galloprovincialis (4th-11th June 2013), by regions. Each data point represents one shell; 

regions are represented by a separate symbol and color. In (A) we used our predefined regions based on 

local topography and oceanography while (B) represents LDF analysis using three regions.  

 
 

Table 2.2 Jack-knife classification success of DFA of incubated M. galloprovincialis larval shells, with 

sampling sites grouped into A) 4 regions and B) 3 regions. Correct classifications are in bold (average of 

68.3% and 79.5% of cross-validated cases correctly classified, when considering 4 and 3 regions 

respectively, n= number of individuals). 

 

 

 

Predicted Group Membership (%) 

Region (A)  Arrábida Cascais Estremadura North Estremadura South 

Arrábida (n=16) 75.0 12.5 12.5 0.0 

Cascais (n=15) 20.0 60.0 20.0 0.0 

Estremadura North (n=22) 4.5 4.5 81.8 9.1 

Estremadura South (n=10) 0.0 20.0 40.0 40.0 

     

 
Predicted Group Membership (%) 

Region (B)   
Arrábida Cascais Estremadura 

Arrábida (n=16) 75.0 12.5 12.5 

Cascais (n=15) 20.0 60.0 20.0 

Estremadura (n=32) 0.0 9.4 90.6 

    



Chapter II 

56 
 

 Eight trace elements entered the model (B, P, Co, Cu, Zn, Ce, Pb, and U) and the first 

canonical function explained 73% of total variance, with Pb and Zn, B, P with positive loadings 

and Cu, Co, Ce, U with negative loadings (Table 2.3). The second canonical function explained 

the remaining 27% of total variance, with Zn and Co loading negatively. Arrábida and 

Estremadura were separated mostly by the first function, with positive values for Arrábida and 

negative values for Estremadura, indicating higher concentrations of Pb and P in Arrábida. The 

second function separated Cascais from the other two regions, with higher values of Zn in this 

region. 

 

Table 2.3 Standardized canonical discriminant function coefficients corresponding to the canonical score 

plot in Fig.2.2B. Percentages of variance and canonical correlation coefficients for each function are also 

shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 Univariate analyses of variance comparing ratios to calcium for the 8 elements used to 

discriminate larval shells among regions resulted in significant differences in four elements 

(Table 2.4, Pb:Ca F=24.463 p=0.00001, Zn:Ca F=11.501 p=0.000059 , U F=0.961 p=0.000086 

and Ce F=3.878 p=0.026065). Larval shells incubated in Cascais had significantly higher 

concentrations of Zn and lower concentrations of Ce compared with the other two regions; for 

Molar Ratios 

Function 

 1 2 

11B:43Ca .484 .353 

31P:43Ca .708 .486 

59Co:43Ca -.558 -.323 

63Cu:43Ca -.735 .088 

66Zn:43Ca .209 -1.024 

140Ce:43Ca -.246 .254 

208Pb:43Ca 1.271 .268 

238U:43Ca -.644 .342 

% of Variance 73 27 

Canonical Correlation coefficient 
.868 .729 
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Pb concentrations: Arrábida>Cascais>Estremadura; and for U concentrations: 

Estremadura=Arrábida>Cascais (Fig. 2.3). Mean misclassification error to the region level (3 

regions: Arrábida, Cascais, Estremadura) derived from the full model and from the cross-

validation with 10%, 20%, 30% and 50% of the data withheld were then compared using an 

ANOVA (F=19.71, p<0.001). Tukey HSD post-hoc tests confirmed no significant differences in 

misclassification error between the full model and those subsets which included at least 80% 

of the data. The consistency detected on classification success among those subsets confirmed 

our capability to detect distinctive signatures for each region and sufficient sampling effort to 

account for variability within each region. 
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Figure 2.3 Ratios to calcium for the 8 elements used to discriminate larval shells of 

M. galloprovincialis from the regions Estremadura, Cascais and Arrábida. Bars represent the regional 

mean with 1 standard error bars. Letters above bars indicate significant differences according to Tukey 

post-hoc tests.   
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Table 2.4 Univariate analysis of variance of the effect of region (Estremadura, Cascais and Arrábida) on 

trace element concentrations in larval shells of Mytilus galloprovincialis. Only trace elements which 

entered the LDF model were included in this analysis. Bold values indicate significant effects at the 5% 

significance level. df= degrees of freedom; SS= sum of squares; MS= mean square; Fs= F test value; p= 

probability value. Post hoc pairwise comparisons using Tukey tests are shown in Fig. 2.3. 

 

 

 

 

 

 

208Pb:43Ca 
Source of variation df SS MS Fs p 

Region 2 5.513 2.756 24.463 0.00001 
Error 60 6.250 0.104 

 
  

Total 62 11.763 
  

  
66Zn:43Ca 
Source of variation df SS MS Fs p 

Region 2 4.319 2.160 11.501 0.000059 
Error 60 11.267 0.188 

 
  

Total 62 15.586 
  

  
238U:43Ca 
Source of variation df SS MS Fs p 

Region 2 1.922 10.980 0.961 0.000086 
Error 60 5.252 0.104 

 
  

Total 62 7.175 
  

  
140Ce:43Ca 
Source of variation df SS MS Fs p 

Region 2 1.244 0.622 3.878 0.026065 
Error 60 9.622 0.160 

 
  

Total 62 10.866 
  

  
11B:43Ca 
Source of variation df SS MS Fs p 

Region 2 0.161 0.080 2.343 0.105 
Error 60 2.056 0.034 

 
  

Total 62 2.216 
  

  
31P:43Ca 
Source of variation df SS MS Fs p 

Region 2 0.241 0.136 1.766 0.180 
Error 60 4.612 0.077 

 
  

Total 62 4.883 
  

  
59Co:43Ca 
Source of variation df SS MS Fs p 

Region 2 0.216 0.108 1.062 0.352 
Error 60 6.096 0.102 

 
  

Total 62 6.312 
  

  
63Cu:43Ca 
Source of variation df SS MS Fs p 

Region 2 0.380 0.190 1.062 0.352 
Error 60 10.732 0.179 

 
  

Total 62 11.111       
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 2.3.2 Establishment of natal origin of juveniles 

 128 recent settlers of M. galloprovincialis were collected in the Estremadura region at 

8 sites (average width ± 1 standard error, 462.7 μm ± 31.18), 30 in Cascais, at 2 sites (833.3 μm 

± 172.35) and 43 individuals in Arrábida, at 3 sites (549.57 μm ± 30.37). The collection occurred 

approximately 42 days after the incubation period. The small size of the individuals assembled 

(534.23 μm± 49.01 SE) indicates that settlement had occurred in the preceding two-three 

weeks. With a larval duration of approximately 3-4 weeks for this species, at the temperatures 

recorded during the study, the larval incubation period matches the early stages of planktonic 

larval development for these recruits. Out of 201 juvenile mussels, 81 (40.3%) were allocated 

an unknown origin (probability of group membership <0.90), most of them collected from 

Estremadura (72.8%). When “relaxing” our criteria for successful recruit assignment based on 

the posterior probabilities in the DFA, the overall percentage of individuals from “unknown 

origin” drops from 40.3% (<0.90) to 24.4% (< 0.75) and to 5% (<0.5). In all three scenarios, 

however, the general pattern in larval dispersal distance and direction remains the same. For 

this reason, and because we want to account for the inherent uncertainty in the atlas of natal 

signatures, we have presented the most conservative approach in larval assignment and 

discuss the likely origins of unknown individuals based on local oceanographic and topographic 

characteristics. Within a region, the natal origin of the recruits collected was variable, mainly 

for the Estremadura region, where recruits exhibited greater diversity in natal sources (Fig. 

2.4), suggesting high heterogeneity in the local hydrodynamics.  

 Recruits collected in the bays of Cascais and Arrábida, primarily fall under the domain 

of Arrábida natal signature, accentuating the high self-recruitment within its bay, high larval 

export from Arrábida and no self-recruitment amongst Cascais bay, for this period. 
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Figure 2.4 Canonical score plot of the individual recruits according to the discriminant analysis based on 

larval shell elemental signature. Symbols represent where recruits were sampled. Lines represent 

average larval scores (centroid) and extent (maximum and minimum values) for each region, following 

the colour code: light grey, dark grey and black for Arrábida, Cascais and Estremadura, respectively. 

Recruits which fell under the 90% confidence interval for assignment are not shown. 

 

 We found evidence for mussels in Estremadura to have originated from Arrábida, with 

recruits collected as far as Baleal and Berlengas estimated to have dispersed more than 100 

km north (Fig. 2.5). Also, recruits collected in Estremadura originated in Cascais (9%) and self-

recruitment was detected within the region (19% of juveniles collected in the Estremadura 

region originated in that region) (Fig. 2.6). Cascais showed no self-recruitment and appeared to 

be the region with least importance in larval export to other regions. Interestingly, 70% of all 

recruits collected in Cascais came from Arrábida Bay (which is an MPA). Arrábida MPA showed 

the greatest contribution as a source population, and high levels of self-recruitment (58%), 

with only few recruits originating from Cascais (5%) and none from the most northern region, 

Estremadura (Fig. 2.6).  

 Natal origins of recruits in the Berlengas MPA were the most diverse, with little 

connectivity to Arrábida MPA. In terms of dispersal direction, 55.4% of the reassigned recruits 

originated from southern natal sources and only 4.1% were supplied from northern locations, 
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which clearly indicate a northward dispersion pattern (Fig. 2.7). Regarding distances, most of 

the recruits analyzed here were estimated to have dispersed less than 50 km away from the 

natal source, with maximum dispersal ranges of about 120 km. 

 

 

 

Figure 2.5 Predicted natal origins of juvenile mussels. X axis represent collection sites of juvenile mussels 

(early settlers), grouped by main regions, and the colors of the bars symbolize predicted natal origins 

determined by using regional larval shell DFA functions as a training set. Sites are organized from North 

(left) to South (right). See Fig. 2.1 for a site map. 
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Figure 2.6 Predicted dispersal pathways of Mytilus galloprovincialis larvae among the three regions in 

the central west coast of Portugal, during mid June to mid July 2013. Arrow’s color and width represent 

recruits which originated from the region at the base of the arrow. White arrows indicate unknown 

origin. Bar graphs 1, 2 and 3 correspond to the number of juveniles collected (by region) and predicted 

natal origins (by region), for Estremadura, Cascais and Arrábida correspondingly. 

 

 
 

Figure 2.7 Predicted dispersal direction and distance from natal source (km) of Mytilus galloprovincialis 

successfully assigned recruits (n = 121), during mid June to mid July 2013. Self-recruits are individuals 

estimated to have settled into the same region where spawning took place.  



Chapter II 

64 
 

 2.3.3 Environmental Data  

 The daily Upwelling Index series (Fig. 2.8) from June and July 2013 at Cabo da Roca 

showed a strong upwelling event from the 15th of June until the 3rd of July, followed by an 

extensive relaxation period which lasted until the 24th of July. This long relaxation period (3 

weeks) is unusual for this season, which is typically characterized by prevailing northerly winds 

(Relvas et al. 2007). An abrupt SST warming took place immediately after the upwelling 

maximum on the 23rd of June, rising from average values oscillating around 14.5 °C in June 21st 

to average values of 18.8 °C on July 11th, and stayed high until the end of July. Daily 

chlorophyll-a concentrations increased from around 2 mg/m³ before the upwelling event to 

between 6 and 8 mg/m³ immediately after the upwelling maximum, stayed high during the 

event and decreased again to around 2 mg/m³ during the relaxation event. These temporal 

patterns are consistent with a northward advection of a warm water mass starting around the 

25th of June, about 15 days after the larval incubation trial, and continued until the sampling of 

the recruits from the 23rd to the 25th of July. 
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Figure 2.8 Daily time series of A) the Upwelling Index (UI) estimated for the Cabo de Roca, B) Surface 

Temperature (SST; °C) and C) Chlorophyll-a concentration averaged separately for each region, during 

June and July 2013. In A), negative values indicate downwelling. Larval incubation and recruit sampling 

periods are indicated in the graph by dashed and solid lines respectively.  
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2.4 Discussion 

 

 2.4.1 Larval-shell geochemical signatures  

 In this study, we provide further evidence that M. galloprovincialis larval shell 

geochemistry can disclose valuable information as environmental and natal tags at an 

ecologically relevant spatial scale, crucial in tracking larval dispersal pathways. M. 

galloprovincialis larvae reared at different sites along the central Portuguese west coast 

showed distinctive trace elemental signatures at the regional level, discriminating between the 

open coast from two large embayments exposed to industrialized estuaries.  

 Distinctive elemental signatures in the biogenic carbonate from invertebrate larvae 

between open coast and bay habitats have been described before (Becker et al. 2005, Carson 

2010, Fodrie et al. 2011). Trace element incorporation in biominerals can be influenced by a 

variety of factors, such as elemental concentrations in local seawater, and seawater 

temperature, salinity, and pH (Campana 1999, Chittaro et al. 2006, Levin 2006). During the 

incubation experiment, however, at least sea surface temperatures and salinities from all sites 

were very similar across the studied area (temperature values ranged from 14.75°C to 15.81°C, 

and salinity varied between 35.93 and 36.09). Although the incorporation mechanisms 

involved in the site-specific trace elemental composition in larval calcified structures is still 

uncertain for most elements, this knowledge is not required to successfully apply the 

technique for tracking natal origins (Gillanders 2002, Zacherl 2005, Becker et al. 2007, Carson 

2010, Cook et al. 2014). 

  In our study, zinc (Zn), lead (Pb), and uranium (U) concentrations on mytilid larval 

shells were the main variables responsible for discriminating regional signatures. These 

elements are amongst the group of useful elements (Mg, Cr, Mn, Co, Cu, Zn, Sr, Cs, Ba, Pb and 

U) reviewed by Carson et al. (2013) in southern California, in which the variation in the 

environment is usually reflected in teleost fish otoliths, bivalve shells and crustacean larvae. 

Both estuaries in our study area (the Tagus and the Sado) have been extensively documented 

as having increased anthropogenic trace metal concentrations, from urban wastewater, 

agricultural runoff and industrial effluents, in adjacent waters, suspended particulate matter, 

surface sediments and sediment cores (Caeiro et al. 2005, Costa et al. 2011, Santos-Echeandía 

et al. 2012). Our results showed that larvae reared inside the Cascais bay had higher 

concentrations of zinc in the shell. This is consistent with high trace metal concentrations in 

the surface waters and sediments in the Tagus estuary due to the effluents from chemical, 

steelwork and shipbuilding industries (Cotté-Krief et al. 2000). Arrábida Bay larval shells 

contained the highest concentrations of lead. Richter et al. (2009) also found anthropogenic Pb 
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stable isotope signatures in sediment cores of the Setúbal-Lisbon canyons system, consistent 

with fly ash inputs from waste incinerators, and an efficient transfer from the river discharge 

to the adjacent shelf. Pb has been reported as an effective marker in mussel shells in relation 

to polluted bays (San Diego Bay; Becker et al. 2005). Pb incorporation in the shell is frequently 

well correlated with water Pb concentration (Carson et al. 2010, Fodrie et al. 2011) and one of 

the elements showing less temporal variability in the open coast (Fodrie et al. 2011).  

 Along the exposed coast of Estremadura, larval shells showed significantly higher 

concentrations of uranium. Recently, the incorporation of uranium in biogenically precipitated 

carbonates has received some attention as a potential acidification geochemical proxy in 

foraminifera, corals, and mollusk larval shells, as reviewed in Levin et al. (2015). In order to 

probe for a geochemical proxy that reflects pH exposure in mussel larval shells, Frieder et al. 

(2014) cultured in the lab Mytilus galloprovincialis across a range in pH and temperature, and 

confirmed that U/Ca incorporation reflected mean pH conditions in the water, following a 

strong negative correlation, regardless of larval shell size, oxygen concentration or 

temperature. Additionally, the authors successfully applied that proxy to larvae reared along a 

spatial gradient in upwelling in Southern California, detecting higher U/Ca ratios in larval shells 

reared in colder, low pH waters. Similarly, in the exposed Estremadura region, CO2 enriched 

and low-pH upwelled waters, might explain the higher U/Ca when compared to the contiguous 

and more protected bays of Cascais and Arrábida. However, we were unable to find pH values 

for this region and period to test for this hypothesis.  

 Although we found spatially distinct multielemental signatures, we do not know if the 

signatures are temporally stable. However, studies have suggested that trace element 

compositions within newly recruited bivalve shells (Becker et al. 2005) and larval shells (Cathey 

et al. 2014) can be relatively stable over weekly to monthly timescales. Even when signatures 

are temporally variable, spatial discrimination using bivalve shell chemistry is still often 

possible (Fodrie et al. 2011, Carson et al. 2013). The elements responsible for regional 

discrimination in this study are likely associated with consistent environmental differences 

among locations (i.e. strong upwelling exposed coasts versus bays influenced by urbanized 

estuaries). Nonetheless, the complexity of the shoreline, variable ocean circulation, and the 

dynamic nature of atmospheric and hydrologic pollution inputs actively influence and modify 

seawater geochemistry in coastal and estuarine systems (Swearer et al. 2003, Thorrold et al. 

2007, Miller et al. 2013). Also, more studies are needed to fully understand how the material 

and environment inside artificial incubators can indeed interfere with the element uptake into 

the larval shell carbonate matrix. The potentially different elemental signature of incubator vs 

wild shells could hinder the recruit’s assignment to natal origins. Further work should consider 
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the use of diverse incubators, of different sizes and materials, and different larval densities and 

parenting pools, in order to improve in situ rearing settings and to advance our understanding 

of the formation of geochemical signatures under “caging conditions”. Nevertheless, we are 

confident our results from the larval housing units were able to record regional variation in 

source signatures, between the open coast and two urbanized bays, where the environmental 

factors have prevailed over any regional maternal effects, or any effect due to leaching of 

elements from the incubators.  

 This work represents a momentary and potentially transitory atlas of chemical 

fingerprints; a “snapshot” of the local physical, chemical and oceanographic characteristics 

between June and July 2013.  

 

 2.4.2 Dispersal pathways vs. local oceanography  

 When we assigned early mussel settlers to source populations across 120 km of 

coastline in the central west coast of Portugal, we were able to quantify natal origin and 

dispersal trajectory for 59.7% of the collected settlers. Within a region, the natal origin of the 

recruits collected was variable, mainly for the northern Estremadura region, where the 

number of “unknown origins” was also greater, which might suggest high heterogeneity in the 

local hydrodynamics in this open coastal setting. There were, however, two major sources of 

uncertainty included in the model: recruits originating from outside of our study region (even 

though our sampling was delimited by long sandy- shorelines, a non suitable habitat for 

mussels) and recruits coming from within our study region, but with a less consistent natal 

signature. For these reasons, we followed a conservative approach and only assumed 

successful recruit assignment when the probability (posterior probabilities in DFA) was > 0.9. 

 Bivalves have been described as a potentially long-dispersing species, with estimated 

dispersal distances reaching to 100s of kilometers (Bayne 1976). McQuaid and Phillips (2000) 

calculated that the majority of recruits of Mytilus galloprovincialis in South Africa settled <5 km 

from the parent population. Genetic studies (Kinlan and Gaines 2003), genetics and physical 

oceanography (Gilg and Hilbish 2003), trace elemental fingerprinting (Becker et al. 2007) and 

spatial geostatistical analysis (Smith et al. 2009) have also documented moderate dispersal 

distances (20–40 km) among open coast mussel populations. Lopez-Duarte et al. (2012) also 

reported along-shore dispersal distances of about 35 km for M. californianus and 37 km for M. 

galloprovincialis between generalized regions of origin and destination, in southern California. 

 Accordingly, and even though this study revealed larval exchange among regions 

separated by more than 100 km, for most of the recruits analyzed the dispersal distance was 

estimated to be less than 50 km away from the natal source. However, the dispersal range 
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analysis was constrained by the regional resolution of the natal signatures since geographical 

distances within and amongst natal regions diverges. Nevertheless, it illustrates how far larvae 

can disperse under the local upwelling/ relaxation events. 

  In terms of dispersal direction, we observed an overall northward dispersal. The 

Estremadura region, which is much larger than the other two regions and has the most adult 

mussel habitat, contributed only 1.5% to other regions. This northward overall dispersal 

direction was unexpected since spring and summer periods are characterized by upwelling 

favorable winds resulting in southward ocean surface circulation over most of the shelf (as 

reviewed by Relvas et al. 2007). However, wind-stress reversals and upwelling relaxation 

events are common along the west Iberian coast at short temporal scales (days), affecting 

nearshore circulation (Relvas and Barton 2005, Oliveira et al. 2009). Upwelling relaxation 

events are well described along the eastern boundary of upwelling systems. These events, 

where the wind forces relax after a coastal upwelling event, have been associated with an 

increase in nearshore alongshelf poleward flow reversals in California (Melton et al. 2009, 

Send and Nam 2012) and Chile (Narváez et al 2006). The upwelling index, recorded in the 

region during June-July 2013 revealed the presence of an upwelling event followed by an 

extended upwelling relaxation period, with a sharp increase in SST and a decrease in 

chlorophyll-a concentration. Thus, it is possible that the newly formed mussel larvae were 

initially pulled southward (as a results of the upwelling event), but were then transported 

northward along the coast in July. Based on a multi-year observational study, Sordo et al. 

(2001) reported that, upon cessation of upwelling events, a northward flow progressed 

inshore along the Western Iberian northern margin, causing a narrow band of warm water 

against the coast. Also, Oliveira et al. (2009), using satellite images and numerical simulations 

of SST and Chl-a, reported a rapid onset of coastal counter currents along the inshore zone 

during upwelling relaxation, with northward flow of oligotrophic waters from Arrábida Bay and 

occupying part of Cascais Bay. Accordingly, 70% of the recruits we collected in Cascais were 

supplied by the Arrábida MPA. We found no evidence for self-recruitment in Cascais Bay. The 

hydrodynamics in this bay are strongly influenced by the Tagus estuary, one of the largest in 

Europe, whose plume can be advected offshore during upwelling favorable winds, and pushed 

back northward along the Estremadura coast during relaxation periods (Vaz et al. 2009).  
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 2.4.3 Implications for management and future directions 

 Quantifying connectivity among coastal populations and identifying critical habitats to 

the replenishment of adult populations is crucial for assessing current spatial management 

approaches and to set the scale for future integrated management plans. Different methods to 

derive connectivity estimates differ in their specific objectives, and/or temporal resolution, 

varying from integrative to snapshot assessments. Long term modeling studies have shown 

that larval connectivity is inherently a stochastic process varying as a function of different 

biological and physical processes (Siegel et al. 2008). Although this study derived connectivity 

estimates from a snapshot approach, such empirically-derived metrics are crucial to validate 

the predictions of coastal connectivity and resource dynamics from larger scale modeling 

efforts (Werner et al. 2007). 

 The Arrábida MPA management plan approved in 2005 imposed prohibition to 

trawling, dredging and bivalve harvesting, to preserve its role as nursery for many marine 

species contributing to the sustainability of the local fishing resources (Cunha et al. 2014). Our 

results showed that this MPA was the main source population supplying larvae to the other 

two regions, even though connectivity with Berlengas MPA was very limited. Arrábida MPA 

also contributed to 70% of the recruits collected in Cascais and revealed 58% of self-

recruitment within its bay, suggesting a retention zone for locally spawned larvae. Other 

studies in the Arrábida Marine Park have also showed that fish larvae (namely reef-associated 

species belonging to the families Gobiidae, Tripterygiidae, Labridae and Sparidae) can 

complete their entire planktonic phase in the vicinity of the adults’ habitats (Borges et al. 

2006). Interestingly, Nicastro et al. (2008) studying Perna perna’s gene flow in South Africa, 

showed that coastal topography strongly affected larval dispersal and population genetic 

structure, with bays acting as source populations. However, different reproductive seasons 

(spring and fall) along with changes in upwelling intensity might result in different dispersal 

trajectories for mytilid species (Carson et al. 2010).  

 Self-recruitment and connectivity via larval dispersal has been documented by several 

authors in the assessment of MPAs: using hydrodynamic (Roberts 1997), biophysical (Cowen et 

al. 2006) and spatial metapopulation models (White et al. 2010), genetics (Palumbi 2004), 

dispersal distances (Shanks et al. 2003), parental analysis (Planes et al. 2009) and more 

recently elemental fingerprinting (Di Franco et al. 2012, Cook et al. 2014). Here, we provide 

evidence for high self-recruitment within Arrábida MPA for mytilid larvae but limited 

connectivity with Berlengas MPA, during an upwelling relaxation event. Our results give 

further emphasis on the need to incorporate dispersal pathways and the variability in the local 
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oceanographic setting when developing management plans regarding MPA placement and 

size. 

 Recently, Burgess et al. (2014) underlined the significance of local retention (the 

fraction of offspring produced by a population that also recruits into that population) rather 

than self-recruitment for the dynamics and persistence of spatially structured populations 

within MPA networks. In this sense, larval dispersal patterns require knowledge of larval 

production rates to truly evaluate population dynamics and metapopulation persistence. Our 

next goal is to integrate and combine our results with numerical models of ocean circulation 

and population dynamic models, in order to have a more complete picture of what drives 

mytilid population dynamics and persistence in and around a network of MPAs, over larger 

temporal and spatial scales. Such direct measures of demographic connectivity can be a 

powerful tool used by field practitioners and policy-makers to refine monitoring programs and 

reassess the configuration of current reserves to deal with the contemporary issue of MPA 

network ecological coherence along complex topographic and oceanographic coastlines. 
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Abstract 

 

Describing the distribution patterns of organisms on the rocky intertidal zone is crucial to 

generate ecological models of broad scope and validity. Our aim was to combine 3D 

photogrammetric models and spectral analysis derived from aerial images, with ground-based 

quadrat sampling to provide realistic measurements of mussel (Mytilus galloprovincialis) 

density, size and reproductive output. A remotely piloted aircraft was used to conduct 

intertidal photographic surveys during low tides (<0.4m) over 8 study sites along the 

Portuguese central west coast. At each site, low altitude (30m) and high resolution 

photographs were collected (82 to 247 airborne photographs, 80% overlap, with a ground 

resolution of approximately 0.8 cm/pixel), encompassing an average intertidal area of 15200 

m² per survey location. Images were mosaicked, georeferenced and a 3D photogrammetric 

model was constructed for each location. An analysis of the spectral signature for the different 

ground cover types was used to perform a maximum likelihood supervised classification with 

overall high classification accuracy (86.5% ± 4.3%, mean±SD). Additionally, we analysed the 

effect of environmental variables (substrate complexity and wave exposure) on mussel density 

on rocky substrate and size, and found a significant effect of wave exposure in winter. 

Maximum mussel density occurred at intermediate values of wave exposure while smaller 

sized mussels were found at high values of wave exposure. Density, size and reproductive 

output maps were predicted for the study region. This information may support important 

metapopulation models dealing with the persistence of spatially-structured populations within 

patchy habitats and assist in the management of pivotal conservation areas. 

 

Keywords: UAVs, rocky intertidal, photogrammetry, image classification, spatial metrics 

Mytilus galloprovincialis  

 

 

 

 

 

 

 

 

 

 

 



Chapter III 

80 
 

3.1 Introduction 

 

 As anthropogenic pressures in the coastal zone continue to rise (Boesch et al. 2001, 

Thompson et al. 2002), there is a growing need to resourcefully monitor, detect and forecast 

ecological patterns and processes to assist large-scale conservation strategies.  

In this sense, the use of remote sensing, including aerial pictures, satellite images and acoustic 

data has provided the opportunity to produce large spatial and temporal datasets while 

decreasing physical or biological disturbance (Nagendra 2001, Kerr and Ostrovsky 2003, Wang 

et al. 2010). However, there is still a considerable disproportion between pixel resolution and 

the scale of ecological-relevant features and processes (Philipson and Lindell 2003, Zharikov et 

al. 2005) associated with high altitude photography. The required image spatial extent and 

resolution (ground size and pixel size, respectively), the spectral resolution (wavelength range), 

the frequency of image collection and the cost, are therefore important factors to consider 

when planning for airborne imagery datasets.  

 Regarding intertidal zones, one major challenge in ecology studies concerns not only 

the spatial extent for which data needs to be collected, but also the logistical challenges of 

surveying small organisms reaching very high densities. In addition, sampling is constrained to 

appropriate low tide and wave agitation intervals. Thus, theoretically, intertidal surveys should 

consist of fast assessments and cover large spatial areas with the maximum taxonomic 

resolution possible. 

 Historically, researchers have used field-based sampling and experimental ecology to 

monitor species assemblages and interactions in the intertidal zone (e.g. Paine 1974, 

Underwood 2000, Menge et al. 2015). The commonly used quadrat sampling is a precise and 

efficient method to survey benthic biological communities allowing the identification of 

species at high taxonomic resolution. However, they might misrepresent large scale patterns 

of species distribution and community structure. On the other hand, ground photographic 

surveys (e.g. Witman et al. 2004) are time-efficient and provide long term records (Reimers et 

al. 2014) but these images only provide reliable information on the most abundant and visible 

taxa (Godet et al. 2009).  

 For broader-scale intertidal mapping and monitoring, aerial imagery from satellite 

remote sensing or manned aircraft platforms have been commonly used (reviewed in Godet et 

al. 2009). Also, multispectral LiDAR surveys have been used to evaluate the distribution and 

structural complexity across large spatial scales in coastal habitats (Collin et al. 2012). Yet, the 

low resolution associated with these techniques often fails to detect small-scale patterns of 
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heterogeneity in topography and detail in species abundance and distribution (Meyer et al. 

2015).  

 The improvement of high resolution aerial imagery, following the progress in unmanned 

aerial vehicles (UAV, here referred as drones), offers novel possibilities for the scientific 

community (Watts et al. 2012, Anderson and Gaston 2013). The use of drones creates 

numerous advantages in environmental science: in the study of canopy and vegetation 

dynamics, precision agriculture, ecosystem processes, natural disaster management and 

spatial ecology (as reviewed in Anderson and Gaston 2013 and Shahbazi et al. 2014). In the 

marine and/or aquatic environment, drones’ applications have focused on habitat 

characterization (Chabot and Bird 2013), coastal erosion (Quater et al. 2014), mapping and 

monitoring vegetation (Zaman et al. 2011, Strecha et al. 2012, Turner et al. 2014), 

characterizing water bodies’ bathymetry (Lejot et al. 2007), thermal properties (Wawrzyniak et 

al. 2013) and topography (Mancini et al. 2013, Pérez Alberti et al. 2014). In addition, drones 

are being used in marine wildlife research, on the monitoring of waterbird colonies 

(Grenzdörffer 2013, Ratcliffe et al. 2015), marine mammals (Schoonmaker et al. 2008, Hodgson 

et al. 2010, 2013, Koski 2010, Mejias et al. 2013) and Antarctic predators (Goebel et al. 2015). 

Flight duration and safety, declining operational costs and increasing autonomy, fine spatial 

resolution and increased survey revisit periods, as well as aptitude to fly below the clouds and 

possibility to approach animals, are amongst the advantages of unmanned platforms. 

 This way, low-altitude and high resolution aerial photography offer a better trade-off 

between spatial coverage and image resolution, crucial for intertidal monitoring surveys. There 

is an increasing number of UAVs remote sensing studies focusing on intertidal rocky habitats, 

commonly considered an ideal ‘‘natural laboratory’’ and currently one of the most vulnerable 

marine ecosystems to anthropogenic stressors (Crowe et al. 2000, Halpern et al. 2007). Rocky 

reefs provide important and complex environments with sharp environmental gradients and 

exposure to wave action. Moreover, covering a large portion of the world’s coastline, they 

grant important ecosystem services (Duarte 2000) and serve as a sentinel for the impacts of 

climate change (Helmuth et al. 2006). Studies of low altitude aerial photography of rocky 

intertidal areas include the use balloon platform to study topography and algal biomass 

(Guichard et al. 2000) and the use of kites to take multi-spectral photographs to construct 

high-resolution, photo-textured terrain models (Bryson et al. 2013). Very recent studies reveal 

the potential of drones in intertidal reefs to accurately monitor dominant algal communities 

(Murfitt et al. 2017) and the distribution patterns and patchiness of seagrass (Konar and Iken 

2017). Also, drones have been successfully used for monitoring rocky intertidal boulder 
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position over time to investigate disturbance in Northern Spain (Pérez-Alberti and Trenhaile 

2015). 

 Aerial photography from piloted aircrafts has been used to study large-scale patterns 

of mussel distribution in intertidal mud and sand flats (e.g. Stoddart 2003, Herlyn 2005, Dolch 

and Reise 2010). Also, Barrell and Grant 2015 successfully used a low-altitude aerial 

photography from a helium blimp platform to study the spatial arrangement of a bivalve-

macrophyte mosaic at an intertidal flat. However, to our knowledge, no published work aimed 

to specifically quantify mussel distribution in rocky shores using drone aerial photography.  

 The Portuguese west coast presents numerous intertidal rocky reefs harbouring rich 

biological communities, with mussels occurring in the lower mid-shore zone (Boaventura, Ré, 

et al. 2002). Mytilus galloprovincialis is a key ecological species influencing the biodiversity of 

intertidal ecosystems, sheltering, supporting and enhancing a diverse number of invertebrate 

species. Mytilid mussel beds or patches of mussels layers form a mussel matrix habitat 

structure essential to the maintenance of local species diversity by increasing spatial 

complexity and creating spatial refuges from environmental stresses (temperature, light, wave 

force) and predation (e.g. Borthagaray and Carranza 2007). Also, as filter feeders, mussels 

regenerate nutrients into benthic biomass, benefiting algae growth and deposit feeders and 

sustaining intertidal food webs (Menge et al. 1997). This way, understanding the factors 

driving mussels’ abundance, growth and productivity can provide important answers about the 

dynamics of the entire ecosystem, and help to develop models predicting population 

performance at larger scale and under different environmental scenarios. 

 Wave action is recognized to be an important environmental factor influencing 

biological communities in the rocky intertidal ecosystems mainly affecting growth (Mcquaid et 

al. 2000, Denny and Wethey 2001), fertilization (Pearson and Brawley 1996), larvae settlement 

(Hunt and Scheibling 1996), dislodgement and size distribution (Mcquaid et al. 2000, Hunt and 

Scheibling 2001). For sessile marine species, such as mussels, population survival depends of 

trade-offs between high nutrient and larvae supply and increased chance of dislodgement on 

very exposed shores (Steffani and Branch 2003).  

 Here, we aim to combine low altitude aerial images with 3D topographic information 

(from digital elevation models) and ground-based quadrat sampling to quantify mussel (M. 

galloprovincialis coverage, density and size (and consequently reproductive output) along the 

Portuguese central west coast. Moreover, we tested the effect of two major abiotic factors 

known to influence mussel distribution: wave exposure and substrate complexity.  The effect 

of wave exposure was calculated using a fetch index combined with local wind data (as 

described in Burrows et al. 2008). 
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We explicitly address the following research questions: 

i. Are low altitude high resolution aerial images useful in investigating fine-scale rocky 

intertidal topography and mussel coverage in rocky intertidal shores? 

ii. Does combining aerial images with 3D photogrammetric models and ground-based 

quadrat sampling provide realistic measurements of mussel bed coverage area? 

iii. Are wave exposure and terrain roughness good explanatory variables of mussel 

density and size?  

 

 Our results support several emerging studies which integrate low altitude 

multispectral imagery with high resolution surface models and ground based observations, as 

a viable and powerful tool for surveying topographic complex intertidal ecosystems. Fast, 

efficient and cost-effective methods producing large scale estimates on species distribution 

patterns are crucial to assist competent conservation management strategies dealing with 

species persistence. 

 

3.2 Material and Methods 

 

 3.2.1 Study area and species description  

 This study was carried out on the rocky shores along the Portuguese west central coast 

(38ºN - 40ºN).The study area incorporates major variations in coastline orientation and 

topography, including capes, submarine canyons, sandy and rocky shores, bays and estuaries 

(Fig. 3.1). It includes very exposed areas, subjected to strong seasonal upwelling (Relvas et al. 

2007) and more protected sites from prevailing north and northwest winds (Fig. 3.1). At minor 

spatial scales, the intertidal landscape is highly variable at the scale of metres, with a 

semidiurnal tidal regime ranging up to 4m. In the North-East Atlantic Ocean, summers are 

characterized by small and short-period waves from northern mean directions while winters 

have more energetic wave conditions, such as larger and longer-period waves from south-west 

to north-west mean directions (Dodet et al. 2010).  
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Figure 3.1 Map of the central west Portuguese coast showing the location of the drone aerial surveys 

and the weather stations (from North to South: Cabo Carvoeiro, Santa Cruz, Cabo Raso, Praia da Rainha 

and Setúbal. The coastline colour scheme represents: sandy shores (yellow), rocky shores (dark grey) 

and estuaries (light grey).   

 

 Mytilus galloprovincialis is an important ecological component of worldwide 

temperate rocky shore communities, native to the Mediterranean (Hilbish et al. 2000). As an 

ecosystem engineer, mussel beds cause physical changes in the substrate and associated biota, 

influencing the availability of resources to other species (Gutierrez et al. 2003, Borthagaray 

and Carranza 2007). Mytilus spp. disperses only via planktonic larvae (3 to 4 weeks, Ruiz et al. 

2008) following a benthic sessile adult phase. Along the Portuguese coast, distribution patterns 

of Mytilus galloprovincialis have been described in the mid and low-shore intertidal 

communities, along wave-exposed and bay habitats (Boaventura, Re, et al. 2002, Araújo et al. 
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2005). Mussels are subjected to an informal but intense traditional fishery, depending largely 

on site accessibility, to supplement diet, for commerce or bait (Rius and Cabral 2004). 

  

3.2.2 Drone flight, imagery and model methodology  

 

 3.2.2.1 Image acquisition 

 The image workflow summarized in Figure 3.2)The Aerial surveys were performed by a 

trained pilot using a V-Form Octocopter-drone manufactured by Ascending Technologies 

GmbH, Krailling, Germany (model AscTec Falcon 8). The drone had attached a NEX 5N Sony 

digital camera (23.4x15.6mm), 16.1 MP Exmor™ APS HD CMOS image sensor. A mobile ground 

station allowed real-time management of flight control, information (data link, remote camera 

control, video connection, status display and telemetry) and data recording. Flight and data 

acquisition were planned in advance based on the study area and the required image 

resolution and size. After conducting a test flight to obtain practical information of the 

photogrammetric results of the images at different heights, we decided to keep the aerial 

surveys at an altitude of approximately 30m.  

 Weather conditions varied over the 5 days of flights, from clear to partly cloudy with 

low winds. Aerial images were collected from 8th – 12th September 2014, at the intertidal 

zone, during very low tides (<0.4m) at the following sites in the Portuguese central west coast: 

Samarra, Porto Novo, Peniche, Mexilhoeira, Bafureira, Maçãs, Galapos, Foz do Arelho. Sites 

were selected from available aerophotogrammetric coverage of the Portuguese coast 

(http://mapas.igeo.pt/lidar/) to ensure representative rocky shore locations and were 

classified according to their morphometry into two categories: Boulders or Flat Platform. 

 Flights were pre-programmed inserting GPS tracks over survey areas and the drone 

performed fully automated low altitude (around 30m) flight routes by waypoint navigation, 

producing high resolution images with 80% overlapping areas. A minimum of 6 and a 

maximum of 12 ground survey quadrates (20x20cm) were haphazardly placed on the mussel 

beds, within the three biological intertidal zones, high, mid and low, identifying presence or 

absence of mussels. For each quadrate, GPS coordinates (handheld Garmin GPSMAP 62S) and 

digital photographs were taken to calculate percentage of mussel coverage at each quadrat 

using Image J© 1.50i. All the mussels inside the quadrats were collected and refrigerated. In the 

lab, mussels were separated, counted and photographed in a white tray. All the mussels 

present in each quadrat were measured along their antero-posterior axis using Image J© 1.50i 

analysis software, and the average length (Length; L) were calculated.  
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 3.2.2.2 Image processing  

 In order to generate high-resolution geo-referenced orthophotos, we used Agisoft 

PhotoScan Pro software for photogrammetric processing of digital images. The software 

combines airborne GPS data (camera latitude, longitude and altitude), with point-cloud 

technology and compensates for intensity/color differences between overlapping images 

during the assemblage of the photo mosaic. The software camera alignment uses the 

aerotriangulation (AT) method, which determines the image position and rotation in space. A 

pair of overlapping images is oriented to one another by measuring the same ground object 

(matching points) in each of the corresponding images, generating a sparse point cloud. Using 

collinearity equations to identical points in multiple images (Yuan et al. 2009), the software is 

then able to determine any point location on the ground, in relation to the images using space 

intersection (the ground x, y, and z location) to project each image pixel to its corresponding 

ground location on the model. A dense point cloud is created and used to re-construct the 3D 

geometry (interpolating the points into a 3D polygonal mesh). The textured geometry can be 

exported as a digital elevation model (DEM), representing the model surface as a regular grid 

of height values. 

 

 3.2.2.3 Image Classification  

 ArcGIS Spatial Analyst was used for supervised image classification. This process 

assigns each image pixel to pre-defined thematic classes, converting multiband raster imagery 

into a single-band raster composed by a number of classes.  

 For each mosaic, we selected the main terrain cover classes: water, sand, rocks, 

mussels, algae and/or urban, depending on the landscape characteristics. Since the purpose of 

this study was the quantification of mussels, we used generalized classes for vegetation. In 

some locations, each individual class was also divided into shadow and light, or wet and dry 

categories, to account for the environmental variability effect on the image. For each class, we 

selected representative 100+ training samples (small polygons of about 20cm², covering the 

entire image extent) from the high resolution image, zoomed to the maximum. This way, each 

training set characterized the typical pixel spectral pattern of the terrain-cover classes. 

 The classification analysis is sensitive to the range of values in each band and works on 

the assumption that the band data in the training set follows a normal distribution. For this 

matter, the spectral statistics of individual training classes were explored, visualizing the RGB 

histograms and scatterplots for each class, to ensure normal distribution and enough 

separation between classes. Depending on the outcome of the training set evaluation, training 

samples were re-edited and reevaluated to ensure representativeness of classes. The software 
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then creates a parametric signature for each class, generating a spectral signature file for each 

mosaic. Finally, we used the Maximum Likelihood Classification algorithm which makes use of 

a discriminant function to determine the membership of the pixels in the mosaic to each class 

represented in the signature file. Each pixel was assigned to the class with the highest 

likelihood or left unclassified if the probability values were all below a threshold of 0.05. The 

resulting classified image is composed of a collection of pixels, color-coded to represent each 

class.  

 

 3.2.2.4 Classification Accuracy Assessment 

 Accuracy assessment of classified images helps to evaluate the quality of classification 

obtained. Here, we define accuracy as the degree of correspondence between the 

classification and visual references in the image, and expressed it by means of error matrices. 

Error matrices compare the relationship between known reference data and the 

corresponding results of the classification procedure, on a class-by-class basis. 

 In this sense, we selected reference samples (validation polygons) in the high-

resolution image in order to project them on the classified image and perceive the 

relationships between the real and the classified image. Validation data was composed of 

evenly distributed small reference polygons for each class (between 100 to 150 polygons, with 

5-10 pixels each), which we could visually identify from the original high-resolution 

photographs. To guarantee that the reference data for the class “mussels” was the most 

accurate as possible, we selected the polygons inside the field ground quadrats easily 

discernible when zooming in the photos. 

 For each image, an error matrix was created to express a quantitative accuracy 

assessment of class membership (Stehman and Czaplewski 1998). It is represented by 

contingency tables where diagonal entries characterize conformity between the classified pixel 

class and reference data, and off-diagonal entries represent misclassifications. We evaluated 

the following accuracy parameters: overall accuracy, Cohen’s kappa coefficient and probability 

of commission and omission errors (Table 3.1).  
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Table 3.1 - Definition of the evaluated parameters in the error matrices (adapted from Stehman and 

Czaplewski 1998). 

 

 

Accuracy metric Description 

 

Overall accuracy 

Represents the overall proportion of the area correctly classified, and is 

calculated by dividing the total correct assignments (the sum of the major 

diagonal) by the total number of pixels in the error matrix. 

 

 

 

 

Kappa coefficient 

Estimates overall accuracy, indirectly taking into account the omission and 

commission errors. It varies from 1 and 0 (perfect agreement or randomness 

between model prediction – classified image – and reality, respectively). 

Kappa is computed as 

K= 
N ∑ xii –∑ (xi+∗x+i)r

i=1
r
i=1

N2−∑ (xi+∗x+i)r
i=1

 

where N is the total number of observations in the matrix, r is the number of 

rows in the matrix, xii is the number of observations in row i and column i, xi+ 

and x+i are the marginal totals of row i and column i, respectively (Bishop et 

al. 1975).    
 

Commission error 

Show false positives or overestimation; occurs when a classification 

procedure assigns pixels to a certain class that in fact don’t belong to it.  
 

Omission error 

Show false negatives or underestimation; occurs when pixels that in fact 

belong to one class, are included into other classes.  

 

 

 3.2.2.5 Mussel estimates 

 In order to determine mussel coverage, we divided the classified image in three 

equally sized sections. In each sample, we calculated the real (not projected) area for the 

“mussels” class and “rocky” and “algae” substrate classes, taking into account the 3D 

topography of the terrain. Real areas were calculated from the Digital Elevation Models using 

the SAGA 2.1.2 algorithm (Conrad et al. 2015). Geoprocesses involved in the combination of 

the classified images and the DEM were carried out in QGIS 2.14 (QGIS Development Team 

2016). The ratio of mussel coverage per m² of available rocky substrate was then calculated. In 

order to estimate the total number of mussels in the image, we used the ground quadrat 

samples (20cm x 20cm) as a reference (Fig. 3.2); the total number of mussels in each quadrate 

was multiplied by the quadrate mussel coverage to determine the number of mussels per m² 
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of rocky substrate (individuals/m²) and the average density of the ground quadrats of each 

image was used to transform mussel coverage to density in the rest of the image.  

 

 

 

Figure 3.2 Example of an orthophoto mosaic, a zoomed view and a ground image of the field quadrat 

(from left to right). The red quadrats included mussels and the green quadrats include any other feature 

(rocks, algae, shadows). These quadrats were used to assist in the accuracy assessment analysis. 

 

 3.2.3 Environmental variables  

 

 3.2.3.1 Wave Fetch 

 We calculated wave fetch using a grid map (grids of 200 m distance cells) of the 

coastline and extending to 200 km on the sea side, using the methodology described in 

Burrows et al. 2008 which considered 200 km as the maximum fetch distance to influence 

wave conditions. For each coastal cell, we defined 16 equal angular sectors (22.5°) and the 

wave fetch was determined as the distance (in km) to the closest land in each angular sector 

(from 0, where the vector reach land, to 200 when the vector reached the open sea at the 

maximum distance). After calculating the sum of all sector distances for each coastal cell 

(Fsum), we averaged that value with the two immediately neighbouring cells (F3avg). This was 

done to create more representative values of the coastline at a local scale, given the coastline 

conversion from a line to a 200m resolution grid.  
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 3.2.3.2 Wind Energy 

 Hourly wind data (direction and speed) was provided by IPMA (Instituto Português do 

Mar e da Atmosfera) for 5 weather stations: Cabo Carvoeiro, Praia da Rainha and Setúbal 

(from January 2004 to December 2014), Santa Cruz (from April 2012 to December 2013) and 

Cabo Raso (from February 2004 to December 2014). Using QGIS 2.14, we then matched each 

coastal cell with the closest weather station (Fig. 3.1) to calculate wind energy. In each cell, we 

calculated wind energy as the average from the product of the proportion of time the wind 

blew in each of the 16 sectors by the square of the average wind speed, in knots. We divided 

the year in two main seasons: summer (from April to September) and winter (from October to 

March). 

 

 3.2.3.3 Wave Exposure Index (WEI) 

 The Wave Exposure Index was determined in every coastal cell as the average of the 

products of the wave fetch and wind energy for each of the 16 sectors, for the summer and 

winter season separately. 

 

 3.2.3.4. Terrain Roughness Index (TRI)  

 Terrain Roughness Index was calculated as the sum of the absolute change in elevation 

between a grid cell and the neighbour cells around a 20 cm² area, using SAGA 2.1.2 algorithms. 

 

 3.2.4 Spatial Extrapolation 

 Generalized additive models (GAMs), as implemented in the mgcv library of R 3.3.2 (R 

Development Core Team 2016), were used to investigate the effect of the environmental 

variables on mussel size (L), and density (individuals/m² rocky intertidal). In order to 

accomplish normality and homoscedasticity, mussel size and density were log-transformed. 

Wave Exposure Index and Terrain Roughness Index were included as smoothed terms in the 

models and estimated with thin plate regression splines. The large correlation detected 

between the summer and winter WEI (r=0.85) prevented the use of both variables together in 

the same model. The possible effect of the shoreline type (Boulders or Flat Platform) was also 

included in the model as a factor. Model selection was based on the Akaike Information 

Criterion (AIC) and model validation of the selected models included the verification of 

homogeneity (lack of structure of the residuals) and normality (quantile−quantile plot of the 

residuals). 

 Selected models were then used to extrapolate mussel density and size along the 

central Portuguese west coast. Reproductive output (RO, Nº eggs/m²) was calculated for each 
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location, using the estimates of population density, average body-size and the known 

relationship between egg production and mussels length (log(NºEggs/mussel)=-

0.133+2.304*logSize(mm); R²=0.3; Siregar, 2014).  

 The workflow summarizing the steps followed in the flight planning, image acquisition, 

processing and spatial extrapolation of mussel abundance, size and reproductive output in the 

study area, is illustrated in figure 3.3 

 

 

 

Figure 3.3 Methodology workflow scheme. 

 

3.3 Results 

 

 3.3.1 Image processing and classification 

 The weather condition during the survey week was similar for all locations, with good 

visibility and low winds. However, the image acquisition flights were planned to occur during 

very low tides, which coincided in some days with very early mornings or late afternoons. This 

way, Porto Novo and Peniche images contained a large amount of shadow and diminished 

brightness.  Other images presented other challenges due to topography, especially in the 

dynamic area where waves meet the shore causing image mismatching and errors in some 

areas (e.g. Foz Arelho and Galapos). Individual image collection at the different survey sites 

ranged from 82 (Maçãs) to 247 (Porto Novo). The resultant survey orthophoto mosaics had an 

image overlap error of less than 1 pixel for all locations, and covered an average area of 15200 

m² (with a minimum of 5900 m² in Maçãs and a maximum of 25900 m² in Porto Novo) with a 
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ground resolution of approximately 0.8 cm/pixel. Total camera location error (m) regarding the 

camera GPS and the Agisoft's model prediction was around 1.5 m for all locations, except Foz 

Arelho where it reached 6.34 m (Table 3.2).  

 

Table 3.2 - Survey data and camera location error. 
 
 

  

Survey data Average camera location error 

Number 
of 

images 

Flying 
altitude 

(m) 

Ground 
resolution 
(cm/pix) 

Coverage 
area (m²) 

Image 
overlap 

Error 
(pix) 

X error 
(m) 

Y error 
(m) 

Z error 
(m) 

Total 
error 
(m) 

Foz Arelho 131 31.44 0.84 16600 0.99 5.80 2.49 0.65 6.34 

Peniche 132 32.80 0.87 15400 0.87 2.25 1.97 0.38 3.02 

Porto Novo 247 33.11 0.89 25900 0.93 1.28 0.53 0.69 1.55 

Samarra 116 27.23 0.73 13200 0.78 1.08 1.42 0.81 1.97 

Maças 82 29.36 0.77 5900 0.57 0.42 1.27 0.81 1.57 

Mexilhoeira 137 31.09 0.84 14000 0.76 0.76 0.95 0.38 1.28 

Bafureira 90 31.66 0.86 14000 0.82 0.52 0.64 0.35 0.90 

Galapos 108 30.17 0.80 16400 0.92 1.00 0.36 0.39 1.14 

 

 For each aerial survey, we obtained four main outputs: an orthophoto mosaic, a 

classified image based on the ground-cover types, a Digital Elevation Model and a Terrain 

Roughness Index raster image (Figure 3.4 and Supplementary information 1).   
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Figure 3.4 A - Orthophotomosaic of Samarra intertidal rocky shore derived from 33m altitude drone 

fight. B – Classified image (supervised image classification) showing the membership of the pixels in the 

mosaic to each class. C – Digital Elevation model (DEM, in meters). D – Terrain roughness index.  

 

 Classified images accuracy was assessed through error matrices of pixel membership in 

the selected classes (table 3.3). Overall accuracy and kappa coefficient were generally high for 

all images: 86.4 ± 4.3% and 83.1 ± 5.1% (mean±SD), respectively. However, different ground-

cover classes diverged in classification accuracy (see supplementary information 2 for the full 

set of error matrices). In general, the more homogeneous classes of water and sand were 

more accurately classified when compared to the classes of algae, rocks and mussels. 

Regarding the mussel class cover, commission errors (or overestimation) were higher in Porto 

Novo (32.7%) and Maçãs (30.1%), while omission errors (or underestimation) prevailed in Foz 

Arelho (27.6%) and Porto Novo (26.7%). Galapos and Mexilhoeira classified images showed the 

highest overall accuracy and the smallest classification errors for the mussel class (table 3.3).  

 
 

 

 

A B 

C

 

D 
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Table 3.3 Error matrix expressing the accuracy assessment of pixel membership for the overall image 

and for the mussel class cover. 

 

  Overall  Mussel class cover  

Classified Images 
Overall 

accuracy (%) 
Kappa coefficient 

(%) 
Commission error (%) Omission error (%) 

Foz Arelho 82.2 79.7 8.9 27.6 

Peniche 83.2 78.8 0.1 13.7 

Porto Novo 80.8 75.8 32.7 26.7 

Samarra 86.1 82.7 12.5 13.4 

Maças 87.6 83.2 30.1 7.3 

Mexilhoeira 88.6 86.1 0.2 5.6 

Bafureira 89.2 86.9 2.3 20.3 

Galapos 94.1 92.1 0.3 5.0 

 

 Using the classified images, and the DEM, we calculated the 3D surface area for mussel 

and rocky substrate cover, for each image. An example of the orthophoto, classified image and 

DEM is given in Figure 3.4 (for other location, see supplementary information 1). Mussel 

coverage (ratio mussels/rocky substrate) was highest in Maçãs (≈60%), followed by Porto Novo 

(≈20%), Samarra (≈16%), Mexilhoeira (≈9.3%), Galapos (≈6.1%), Foz Arelho (≈5%), Bafureira 

(≈4.5%) and Peniche (0.4%). As for mussel density per rocky substrate area, Maçãs also 

showed the highest density (≈6500 mussels/m²), and Peniche the lowest (≈58 mussels/m²). 

These two locations also presented the smallest mussels (an average length of 1.9 and 1.6 cm 

in Maçãs and Peniche, respectively) while in Porto Novo the average mussel size reached 3.8 

cm (Table 3.3).  
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 3.3.2 Environmental variables 

 Wave Fetch and Wave Exposure Indices (WEI) estimated for the study area are shown 

in Figure 3.5.  

 

Figure 3.5 Wave Fetch (represented by three primary categories for the coastal cells: protected <500, 

moderate 500-1000 and exposed >1000) and Wave Exposure Index (WEI) for summer and winter 

seasons. Round circles illustrate drone aerial survey locations: from North to South: Foz Arelho, Peniche, 

Porto Novo, Samarra, Maçãs, Mexilhoeira, Bafureira and Galapos.  

 

 Wave fetch differed amongst survey sites, from more exposed sites (Peniche, Foz do 

Arelho, Maçãs) to more protected locations (Galapos, Samarra, Bafureira) (Figure 3.5, Table 

3.4). The wind information (wind velocity (m/s) and frequency (%) by coastal sector) for the 5 

weather stations (Fig. 3.6) showed patterns consistent with a typical upwelling environment, 

with stronger northern and northwesterly winds during the summer, and higher values in the 

weather stations located in the exposed coastline (Cabo Carvoeiro, Santa Cruz and Cabo Raso).  
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Figure 3.6 Wind patterns (wind velocity (m/s) and frequency (%) by coastal sector) for the 5 weather 

stations and divided in two main seasons: summer (from April to October) and winter (from October to 

March).  

 

 The Wave Exposure Index (WEI) in the survey locations showed highest indexes in the 

summer when compared to the winter season. Galapos had the lowest WEI in both seasons, 

while Maçãs and Mexilhoeira showed the highest WEI for summer and Peniche and Foz Arelho 

evidenced higher winter WEI. Finally, regarding Terrain Roughness Index (derived from the 

digital elevation model), Maçãs showed the lowest index (0.028) and Porto Novo the highest 

(0.16). Table 3.4 summarizes image mussel coverage, density and size, and all environmental 

estimates for each of the survey locations.  
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 3.3.3 Generalized additive models 

 No significant effects of shore morphotypes (boulders or flat platform) or Terrain 

Roughness Index (TRI) on mussel density were detected. Regarding the environmental 

variables, only the effect of winter WEI was significant, explaining 47.2% of the variability 

observed on mussel density (Table 3.5; Figure 3.5A). Maximum mussel density occurred at 

intermediate values of this index (Figure 3.7A). 

 Concerning size, the model including just winter WEI explained more than 40% of the 

variability (43.2%) showing a progressive decrease in size as Winter WEI indexes exceeded 

intermediate values (Figure 3.7B). Including TRI in the model amplified the variability explained 

to 57.3% and reduced the Akaike Information Criterion (AIC) (Table 3.5). The effect of winter 

WEI kept the same relationship with an optimum of density at intermediate values (Figure 

3.7C) but this model revealed a linear (edf=1; Table 3.5) and positive relationship between size 

and the heterogeneity of the rocky substrate (Figure 3.7D). Nonetheless, shore morphotype 

(boulders and flat platforms) did not show a significant effect on mussel size (p>0.05) for any 

of the model combinations tested. In brief, we found higher mussel density at intermediate 

levels of WEI exposure in winter, smaller mussels at high WEI and bigger mussels where 

substrate complexity was higher. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter III 

98 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Generalized additive models results showing: (A) the effect of winter WEI on mussel density 

(log (nº mussels/m2)) (B) the effect of winter WEI on mussel size (logSize (mm)), (C) the partial effect of 

winter WEI and (D) TRI on mussel size for the model which combines both variables (Table 3.3). Dotted 

lines indicate 95% confidence intervals, and tick marks along the x-axis below each curve represent 

effect values where observations occurred. Open circles indicate flat platform morphotype while filled 

circles represent boulder shores. 

 

 Although including TRI in the model increased the accuracy to predict mussel size, we 

used the models which only accounted for the winter WEI effect (Figure 3.7A) to extrapolate 

our results to the rest of the central Portuguese west coast, since TRIs were not available for 

the whole study area. Figure 3.8 illustrates the M. galloprovincialis distribution maps regarding 

mussel’s abundance, size and reproductive output along the rocky coast in the study area, 

based on model predictions. The maps highlight areas with low to intermediate winter WEI as 

C 

A 

B 

D 

B 
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the most relevant from the reproductive output point of view, because of the combination of 

higher mussel density and larger individuals. 

 

 

Figure 3.8 Mytilus galloprovincialis predicted density, mean size and reproductive output in the central 

west Portuguese rocky shore. 
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Table 3.4 – Drone aerial survey image estimates for mussel and rocky substrate cover, density and size, and environmental variables used in the GAMs ( * represents image sections). 

  
 

Image processing Environmental variables 

Drone aerial 
surveys 

* 
Mussel 
cover 3D 
(m²) 

Rocky 
substrate 
cover 3D 
(m²) 

Ratio 
mussel: 
rocky 
substrate  

Average 
mussel 
density in 
field 
quadrats 
(indiv/m²) 

Average 
mussel 
density on 
the shore 
(indiv/m²) 

Average 
mussel 
size in 
field 
quadrats 
(cm) 

Wave 
Fetch 
(F3avg) 

Weather 
Station 

Wind 
Energy 
Summer  

Wind 
Energy 
Winter  

Wave 
Exposure 
Index 
Summer  

Wave 
Exposure 
Index 
Winter  

Mean 
Terrain 
Roughness 
Index 

Shoreline type 

Foz Arelho 

1 120.677 2749.392 0.044 5220.429 229.136 2.660 

1007.3 
Cabo 

Carvoeiro 
26.756 35.688 274.994 227.170 

0.052 flat rocky platform 

2 238.095 2994.176 0.080 5220.429 415.125 2.950 0.091 flat rocky platform 

3 96.768 2702.812 0.036 5220.429 186.906 2.500 0.082 flat rocky platform 

Peniche 

1 437.674 47571.302 0.009 13928.953 128.152 1.560 

1137.4 
Cabo 

Carvoeiro 
26.756 35.688 248.548 254.949 

0.090 flat rocky platform 

2 140.249 48107.451 0.003 13928.953 40.607 1.510 0.028 flat rocky platform 

3 16.648 48660.593 0.000 13928.953 4.765 1.780 0.047 flat rocky platform 

Porto Novo 

1 1125.126 5173.560 0.217 3698.778 804.396 3.750 

1003.5 Stcruz  17.634 19.966 166.125 106.101 

0.172 boulder fields 

2 660.564 3292.824 0.201 3698.778 742.001 3.920 0.159 boulder fields 

3 582.010 3225.787 0.180 3698.778 667.349 3.610 0.149 boulder fields 

Samarra 

1 275.274 4647.534 0.059 5580.751 330.548 2.620 

813.6 Stcruz  17.634 19.966 166.268 106.868 

0.039 boulder fields 

2 391.484 1380.050 0.284 5580.751 1583.114 2.590 0.046 boulder fields 

3 122.425 889.225 0.138 5580.751 768.335 2.950 0.021 boulder fields 

Maças 

1 826.432 1166.844 0.708 10054.968 7121.560 2.010 

1005.6 Cabo Raso 34.342 30.308 338.700 183.359 

0.030 flat rocky platform 

2 561.587 900.172 0.624 10054.968 6272.956 1.810 0.019 flat rocky platform 

3 529.496 897.788 0.590 10054.968 5930.199 1.970 0.035 flat rocky platform 

Mexilhoeira 

1 230.530 2440.719 0.094 10032.552 947.593 2.100 

938.8 Cabo Raso 34.342 30.308 355.741 186.767 

0.083 boulder fields 

2 267.248 3225.587 0.083 10032.552 831.224 2.270 0.067 boulder fields 

3 418.775 4126.865 0.101 10032.552 1018.055 1.980 0.068 boulder fields 

Bafureira 

1 117.174 2729.946 0.043 6603.640 283.439 2.980 

933.3 P.Rainha  7.177 9.745 59.771 30.624 

0.054 flat rocky platform 

2 99.125 3500.263 0.028 6603.640 187.010 2.870 0.039 flat rocky platform 

3 183.525 2917.836 0.063 6603.640 415.353 3.010 0.053 flat rocky platform 

Galapos 

1 113.520 2646.096 0.043 9119.045 391.214 2.420 

766.5 Setúbal 5.519 3.715 36.838 14.141 

0.091 boulder fields 

2 155.264 3054.052 0.051 9119.045 463.599 2.500 0.095 boulder fields 

3 259.664 2957.599 0.088 9119.045 800.611 1.980 0.114 boulder fields 
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 Table 3.5 - Structure of the significant General Additive Models detected to describe the effects of the environmental and morphometric variables on mussel density (A) 

and Size (B). edf: estimated degrees of freedom for the smooth terms.  AIC: Akaike Information Criterion. Values in bold indicate statistical significance. 

 

 
  Parametric Coefficient Smooth terms (non parametrics) 

Variable Parameter Estimate S.E. t P Parameter e.d.f F P R2 adj. 
% Deviance 
explained 

AIC 

A)                         

log(Density) Intercept    2.695 0.104 25.69 <2x10-16 Winter WEI 1.94 8.706 0.001 0.423 47.20%   

                          

B)                         

 log(Size) Intercept  1.386 0.018 75.9 <2x10-16 Winter WEI 1.85 6.851 0.004 0.382 43.20% -43.10 

                          

log(Size) Intercept  1.386 0.016 85.44 <2x10-16 Winter WEI 1.85 6.109 0.006 0.513 57.30% -47.94 

            TRI 1 6.822 0.016       
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3.4 Discussion  

 

 3.4.1 Drone aerial survey estimates 

 The results of this study indicate that high-resolution images obtained from drone 

platforms, together with the quantification of fine-scale geomorphologic substrate attributes, 

show great potential for intertidal monitoring protocols at an ecologically relevant scale. The 

drone’s ability to be quickly and repeatedly deployed offer the possibility to quantify spatial 

patterns of intertidal rocky organisms and vegetation otherwise not detectable with satellite 

imagery or piloted aircrafts. Recognizing these patterns is the first step to understand how 

species distribution is shaped by the environment, and develop broad scale metapopulation 

models to increase ecosystem sustainability (Rango et al 2006).  

 The use of the maximum likelihood classification algorithm produced very high-

resolution ground-cover classification maps useful for general spatial and temporal 

identification and characterization of landscape and functional groups diversity in rocky 

intertidal areas. However, in pixel-based image analysis the main challenge has to do with the 

determination of a RGB band spectrum which is representative and distinctive for the ground-

class training set (Foody et al 2004, 2006). The quality of the pixel-range training set for each 

class depends on image resolution, the features of interest to be categorized, the natural light, 

amount of shadow present and the image analyst expertise of the landscape. Ideally, areas 

used as training sites should derive from ground data, and be accessible for ground truthing 

and verification. Since both training sets and validation samples for accuracy assessment are 

derived from visual interpretation of the same image, some subjectivity is inherent in the 

overall image analysis. This has been a limitation in achieving accurate automatic classification 

of complex landscape from low resolution remote-sensing imagery (Manandhar, Odeh, and 

Ancev, 2009). However, were able to use the ground quadrats mussel pixels to test accuracy of 

the mussel class, and working with high resolution images (≈1 cm²), such as the ones used in 

this study, help to identify clear and unambiguous features on the image and avoid scene-

dependent errors.  

 Yet, due to absence of near infrared imagery, which is more suitable for vegetation 

classification, we kept a general class for vegetation, since our goal was to develop a protocol 

capable of separating the mussel class cover type from the rocky/algae substrate.  Importantly, 

our resulting maps can still easily recognize the size, patchiness and meadow boundaries of 

vegetated intertidal areas, highlighting other potential uses of these techniques.  
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 In our study, class cover misclassification errors involving the mussel class were caused 

mostly by spectral confusion between the mussel class and classes of algae or rocks in the 

shadow. These errors in the classified maps take place when classes are not spectrally 

separable or atmospheric effects mask fine differences. This illustrates some difficulty in 

separating land-cover classes based on spectral signatures, especially given the low contrast in 

vegetation cover and associated biota accentuated by shadow conditions in 3D complex 

environments. At a species level classification, mixed-pixel effects can restrict the use of aerial 

imagery in detecting fine-scale processes. In our case, it is possible that the mussel shells were 

not easily distinguished from dark-colored rocks, especially in shadow areas and areas 

exhibiting dark encrusted algae growing on the rocks. Object-based image analysis, rather than 

pixel-based have shown to perform better classifications with high and very high-resolution 

images exhibiting low spectral information or shadow (Yu et al. 2006). 

 The contemporary development in image acquisition and processing techniques 

dealing with multispectral sensors (Zeng et al. 2017), image segmentation parameters 

(Johnson and Jozdani 2018), texture and object-based classifications (Laliberte and Rango 

2009) and shadow effects (Milas et al. 2017) will likely improve spectral differentiation and 

ground cover class differentiation in the future. Moreover, fine-scale digital surface models 

hold great promise for a number of applications in ecological studies. 

 Konar and Iken 2017, in a rocky intertidal strata within a seagrass bed, compared 

images captured by drone with data derived from observers on the ground. As expected, the 

authors found that the observer data achieved higher resolution of taxonomic categories, but 

on the coarse taxonomic resolution drone imagery could detect larger spatial scale (regional) 

and differences in overall community structure. Importantly, Murfitt et al. 2017 showed that 

the total time taken to complete the drone survey of the intertidal reef was half the time of 

on-ground quadrat observations, with no significant differences between drone and on-ground 

estimates for a dominant single-species canopy cover. Duffy et al. 2018, using very fine spatial 

resolution aerial images were able to identify meadow features such as lugworm (Arenicola 

sp.) mounds and cockle shells (Cerastoderma edule).  

 Our study, integrating low altitude aerial images and ground surveys provided overall 

high accuracy classification images and allowed the quantification of mussel coverage and 

density along heterogeneous stretches of intertidal rocky shores. Moreover, the fact that 

drone imagery produced 3D high resolution orthogonal models proved useful to measure 

habitat complexity and calculate realistic surface coverage in highly heterogeneous rocky 

substrates. 
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 3.4.2 Model estimates 

 Regarding the analysed environmental variables, our results highlight the relevance of 

wave exposure on the density and distribution of mussel’s populations along the Portuguese 

coast. Although winter and summer WEIs were highly correlated (r=0.85), only winter WEI had 

a significant effect on mussel abundance, pointing out the stronger hydrodynamic stress 

suffered during winter. However, WEI indexes reached higher values during summer for most 

locations, which can be seen in Figure 3.5. This pattern of large values of WEI observed during 

summer are driven by stronger N and NW upwelling predominant winds characteristic of this 

season. Still, wave energy has been described as much higher during fall-winter than spring-

summer (Silva et al. 2012; Ramos et al. 2017). Wave seasonal patterns in the Iberian Peninsula 

are highly dependent on the North Atlantic Oscillation index (NAO) which represents 

differences of atmospheric pressure between the Iceland Low and the Azores High systems. 

Characteristic positive values of NAO during winter-fall represent high pressure differences 

between these two systems and are associated to stronger storms, larger wave heights and a 

predominant North-Eastward wave direction which is also associated to larger alongshore 

sediment transport (Silva et al. 2012; Ramos et al. 2017). This way, on the Portuguese west 

coast, although the wave regime is dominated by swells from the NW, storm periods with 

extreme wave conditions are associated with prevailing southerly winds and downwelling 

conditions (Vitorino et al. 2002), occurring during the winter months with high wave heights 

(Pita and Santos, 1989). This way, adding wave energy data (wave direction and significant 

height) from local oceanographic buoys would greatly improve our understanding the winter 

wave regime in our study way. 

 Our results indicate that WEI is only determinant for mussel densities during the 

periods when wave energy is high enough to cause dislodgement stress.  

Wave generated hydrodynamic stress strongly influences intertidal communities (e.g. Paine 

and Levin 1981, Denny and Wethey 2001, Lindsay and McQuaid, 2007), affecting species 

vertical distribution and their trophic relationships (McQuaid and Branch 1985). Some 

nearshore areas in Portugal have been characterized of considerably high energy, given the 

country’ s location at relatively high latitude, orientation and the presence of a stretched area 

of ocean immediately to the west. High energy waves were characterized in the extreme north 

of the Portuguese coastal environment and in the central region around Peniche and Cabo da 

Roca areas (Rusu and Soares 2009; Ramos et al. 2017).  

 Water motion influences fertilization (Pearson and Brawley 1996), larval input and 

settlement (Hunt and Scheibling 1996), growth (McQuaid and Lindsay 2000), nutrient and 

sediment cycling [Griffiths and Hammond, 2004], species dislodgement (Rius and McQuoid 
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2006), species competitive interaction (Branch and Steffani 2003) and even shell morphology 

(Stewart and Carpenter 2003). This way, as wave action increases, nutrient and larval cycling 

also increases, along with amplified hydrodynamic stress, critical for the attachment, growth 

and survival of sessile intertidal communities. In this manner, wave action is a limiting factor 

for intertidal organisms’ growth and survival, forcing them to adapt, withstand and cope with 

the constant dynamics of water motion (Carrington et al. 2008). We found maximum mussel 

densities at intermediate wave exposure values during winter in agreement with several 

studies demonstrating that M. galloprovincialis is present in a wide range of sheltered and 

exposed conditions, but thrive under intermediate degrees of wave exposure with highest 

abundance. 

 Exposed sites with intermediate levels of wave exposure seem to favour mussel 

relative abundance (Willis and Skibinski 1992, Cáceres Martínez et al. 1993, van Erkom 

Schurink and Griffiths 1993, Bustamante and Branch 1996, Bustamante et al. 1997, Branch and 

Steffani 2004). The rationale behind this trend might be that high water flow increases food 

delivery and larval supply, as well as limiting predation, thus promoting faster growth and 

larger densities; however, high water flow and wave impact may also increase dislodgement 

(e.g. Denny 1988, Bertness et al. 1991, van Erkom Schurink and Griffiths 1993, Dahlhoff and 

Menge 1996). This way, important limiting factors seem to play critical roles at either end of 

the wave exposure range: sheltered sites having diminished larval input and nutrient cycling 

with fewer settlement, slower growth and increased benthic predation (Menge 1976) and very 

exposed sites causing too much physical stress, diminished opportunities for attachment and 

greater mussel dislodgment (Seed and Suchanek 1992). This trend has been reported for 

several mytilid species in different biogeographic locations. Steffani and Branch (2003), in the 

West Coast of South Africa, found greatest recruitment and growth rates for M. 

galloprovincialis at exposed sites in comparison to sites sheltered from direct wave action or 

sites exposed to extreme wave action. Blanchette et al. (2007), in California, also found that M. 

galloprovincialis grew faster at moderately exposed sites when compared to sheltered and 

extremely exposed sites and Westerbom and Jattu 2006, in the Baltic Sea evoked higher 

Mytilus edulis biomass at areas with intermediate wave exposure. In northwest Atlantic rocky 

intertidal habitats the distribution of Mytilus edulis and M. trossulus along a full gradient of 

wave exposure yielded similar results: low density in very sheltered and very exposed habitats, 

and high density in intermediate exposed habitats (Tam ad Scrosati 2014). In addition, in a 

broad scale general description of rocky shore distribution patterns along the whole 

Portuguese coast, M. galloprovincialis was present along the entire coast but showed a 

progressively decline in abundance from north to south, following a general decrease in 
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exposure (Boaventura et al 2002). Similarly, in a recent study of the SW Portuguese coast, the 

abundance of P. pollicipes was modelled as a function of a fetch-based exposure indices and 

the barnacle abundance increased non-linearly with fetch. 

 Regarding mussel’s size, we found larger mussels at low and intermediate values of 

wave exposure. In South Africa, larger individuals of the invasive M. galloprovincialis are also 

found at intermediate levels of shore exposure (McQuaid et al. 2000; Hammond and Griffiths, 

2004). O’Connor 2010 reported less dense and larger mussels on sheltered rocky shores on 

Atlantic coasts in Ireland and other studies also reported smaller mussels in more exposed 

shores (e.g. Alvarado and Castilla, 1996). For high wave energy environments, Hunt and 

Scheibling (2001) described a greater probability of dislodgment for larger mussels than 

smaller ones. Additionally, by using 3D profile irregularity data to characterize topographic 

complexity, our study found a relation between mussel size and terrain roughness index, with 

bigger mussels appearing in highly heterogeneous rocky substrates. This indicates that 

irregularity seems to favour growth and provide shelter from physical stress, allowing larger 

mussels to survive. In aquatic ecosystems, the importance of three-dimensional structures in 

providing protected habitat space to organisms is well recognized (Tokeshi, 1999; Bruno and 

Bertness, 2001; Kawai and Tokeshi, 2004).   

 Estimations of mussel size are especially relevant to calculate reproductive output of 

different populations, and their contribution to the persistence of the meta-population. 

Although fertility can be influenced for many factors (temperature, food availability, parasites, 

etc.) gonad size is determinant and mussel length has been documented to explain as much as 

30% of the variability observed in egg production (Siregar, 2014). This way, simple and easy to 

obtain variables at long spatial scales, can assist in identifying hotspots for reproduction and 

survival. 

 Nonetheless, we should notice that several factors, other than wave exposure, are 

likely to explain mussel density, size and reproductive output in the study area.  At a smaller 

spatial scale, biological interactions within the intertidal community (competition and 

predation) or the type of substrate and topography, such as slope and inclination can shape 

mytilid distribution. On a larger spatial scale, temperature and dissection effects, 

heterogeneous harvesting pressure and variation in the intensity of coastal upwelling can play 

an important role in the recruitment and survival of benthic invertebrates along intertidal 

shores. Also, episodic storm events have been shown to strongly affect mortality of mussels in 

exposed areas (Zardi et al. 2006).  

 This study showed the importance of wave exposure in shaping mussel densities in 

rocky substrates and consequently, reproductive output. These results are crucial given that 
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climate change is increasing levels of wave action globally (Young et al. 2011) and increasing 

storms and wave height in the Atlantic (e.g. Andrade et al 2007) with potential increase in the 

environmental stress upon the coastal ecosystems and activity. Understanding and predicting 

patterns of distribution and abundance of key ecosystem engineers is important to generate 

ecological models of broad scope and validity for coastal ecosystems conservation purposes.  

Studies such as this one provide comprehensive protocols to assist data-acquisition techniques 

and methodologies which can be used on multiple spatial and temporal scales, to effectively 

identify habitats and species distribution patterns in rocky intertidal areas. 

 

3.5 Conclusions 

 

 In this study we have confirmed the potential of drone-based aerial surveys and image 

techniques for monitoring intertidal rocky shores. In brief, combining automated images 

classification methods, with fine-scale topographic GIS data integration and environmental 

modelling, proved to be a useful way to get large scale information along heterogeneous and 

dynamic stretches of intertidal rocky shores.  

 The protocol developed here provided a time cost efficient protocol to assist 

foundational research questions in ecology, such as dealing with distribution patterns of 

organisms and the way they interact with the biotic and abiotic environment. Our predictive 

model of mussel density, size, and reproductive output, was built to meet practical 

management and forecasting needs. However, further research work, such as additional drone 

aerial surveys are needed to further validate its results, and reflect on whether the model 

mimics the real world well enough for its purpose.  

 Reproductive output has been described as key information to understand the 

persistence of spatially-structured populations within heterogeneous and patchy habitats (e.g 

Treml et al 2012, Burgese et al 2014). This way, our location-specific predictions can be used in 

metapopulation models dealing with the management of pivotal conservation areas. 
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3.7 Supplementary Information 1 - Orthophoto mosaics, classified images, digital elevation 

models (DEM, in meters) and terrain roughness index, for all survey locations.  
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3.8 Supplementary Information 2 - Error matrices  

 

 Columns represent true classes, while rows represent the classifier's predictions. All correct 

classifications are along the upper-left to lower-right diagonal.  

 

1. Foz Arelho 
_____________________________________________________________________________________ 

  

REFERENCE DATA 

 
CLASS WATER SAND 

SAND 
SHADOW 

ALGAE 
GREEN 

ALGAE 
BROWN 

ROCKS 
SUN 

ROCKS 
SHADOW MUSSELS 

PREDICTED 

WATER 1,401 19 0 0 9 176 0 5 

SAND 0 1,452 0 0 1 179 0 2 
SAND 
SHADOW 0 0 998 0 69 22 777 87 

ALGAE GREEN 2 0 0 1,842 0 0 0 0 
ALGAE 
BROWN 0 5 7 4 1,656 103 160 309 

ROCKS SUN 0 26 6 0 53 1,202 32 182 
ROCKS 
SHADOW 0 0 28 0 24 32 1,403 9 

MUSSELS 0 0 0 0 38 0 114 1,562 

 
 
2. Peniche 
_____________________________________________________________________________________ 
 

  

REFERENCE DATA 

 
CLASS 

ALGAE 
GREEN ROCKS DRY ROCKS WET 

ALGAE 
BROW MUSSELS 

PREDICTED 

ALGAE GREEN 1306 1 1 1 4 

ROCKS DRY 22 1782 80 8 2 

ROCKS WET 17 238 775 317 78 

ALGAE BROW 0 6 124 831 289 

MUSSELS 0 0 0 1 1199 

 
 
3. Porto Novo 
_____________________________________________________________________________________ 
 

  

REFERENCE DATA 

 
CLASS WAVES  WATER ALGAE 

BROWN 
ALGAE ROCKS MUSSELS 

PREDICTED 

WAVES  744 2 6 0 42 0 

WATER 56 827 0 9 0 0 

ALGAE 0 0 1,022 211 0 2 

BROWN ALGAE 6 1 45 2,430 89 433 

ROCKS 0 0 0 362 1,573 0 

MUSSELS 0 0 8 277 298 1,197 
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4. Samarra 
_____________________________________________________________________________________ 
 

  
REFERENCE DATA 

 
CLASS WATER WAVES SAND ROCKS ALGAE MUSSELS 

PREDICTED 

WATER 1606 0 0 5 206 0 

WAVES 0 1124 0 0 0 1 

SAND 0 0 1638 43 1 0 

ROCKS 16 66 73 1912 183 235 

ALGAE 3 0 122 128 2269 355 

MUSSELS 0 0 15 133 398 3817 

 
 
5. Maçãs 
_____________________________________________________________________________________ 
 

  

REFERENCE DATA 

 
CLASS WATER WAVES ROCKS ALGAE MUSSELS 

PREDICTED 

WATER 1,153.00 13 282 96 78 

WAVES 0 1,117.00 3 0 1 

ROCKS 0 73 1,607.00 8 22 

ALGAE 0 0 0 1,099.00 28 

MUSSELS 1 0 211 498 1,643.00 

 
 
6. Mexilhoeira 
_____________________________________________________________________________________ 
 

  

REFERENCE DATA 

 
CLASS 

WATER WAVES ALGAE 
ROCKS 
DRY 

ROCKS 
WET 

MUSSELS 

PREDICTED 

WATER 1158 0 0 0 0 1 

WAVES 57 1282 0 0 0 1 

ALGAE 0 0 806 0 0 3 

ROCKS DRY 180 9 1 1142 204 60 

ROCKS WET 188 0 49 193 1474 49 

MUSSELS 0 0 1 1 2 1908 
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7. Bafureira 
_____________________________________________________________________________________ 
 

  

REFERENCE DATA 

 

CLASS SAND ALGAE 
ALGAE 
BROWN 

WATER ROCKS MUSSELS 

PREDICTED 

SAND 1144 7 0 2 19 1 

ALGAE 0 1991 23 3 111 138 

ALGAE BROWN 0 7 759 1 0 315 

WATER 5 5 21 1735 59 18 

ROCKS 48 109 4 117 1445 24 

MUSSELS 0 1 46 0 0 1940 

 
 
8. Galapos 
_____________________________________________________________________________________ 
 

  

REFERENCE DATA 

 
CLASS WATER WAVES ROCKS ALGAE MUSSELS 

PREDICTED 

WATER 1560 0 0 0 0 

WAVES 0 965 120 33 0 

ROCKS 0 35 1261 67 0 

ALGAE 0 2 202 3137 187 

MUSSELS 0 0 0 12 3586 
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Abstract 

 

Marine larval dispersal is a complex biophysical process that depends on the effects of 

species biology and oceanography, leading to logistical difficulties in estimating connectivity 

among populations of marine animals with biphasic life cycles. To address this challenge, the 

application of multiple methodological approaches has been advocated, in order to increase 

confidence in estimates of population connectivity. However, studies seldom account for 

sources of uncertainty associated with each method, which undermines a direct 

comparative approach. In the present study we explicitly account for the statistical 

uncertainty in observed connectivity matrices derived from elemental chemistry of larval 

mussel shells, and compare these to predictions from a biophysical model of dispersal. To do 

this we manipulate the observed connectivity matrix by applying different confidence levels 

to the assignment of recruits to source populations, while concurrently modelling the 

intrinsic misclassification rate of larvae to known sources. We demonstrate that the 

correlation between the observed and modelled matrices increases as the number of 

observed recruits classified as unknowns approximates the observed larval misclassification 

rate. Using this approach, we show that unprecedented levels of concordance in 

connectivity estimates (r= 0.96) can be achieved, and at spatial scales (20-40 km) that are 

ecologically relevant. 

 

Keywords: larval dispersal, marine populations, numerical modelling, elemental 

fingerprinting, uncertainty 
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4.1  Introduction  

 

 The majority of marine macroinvertebrates and fishes have a biphasic life cycle 

comprised of relatively sedentary benthic adults and potentially dispersive pelagic larvae. 

Benthic populations of these species exhibit some degree of connectedness, with the 

consequence that local recruitment may be decoupled from local larval production. This 

creates challenges for identifying the drivers of population replenishment and persistence, 

which are fundamental to our understanding of gene flow, adaptation and evolution in the 

sea (Warner 1997), and for proper fisheries management and biodiversity conservation 

(Warner and Cowen 2002, Sale and Kritzer 2003). Additionally, variability in ocean circulation 

on the time frame of larval life (Siegel et al. 2008) and the lack of knowledge on biological 

parameters that interact with the circulation and other characteristics of the physical-

chemical environment mean that predictions on the extent and direction of marine larval 

dispersal cannot be derived from first principles. Because of this limitation, available reviews 

and syntheses (Mora and Sale 2002, Thorrold et al. 2002, Levin 2006, Thorrold et al. 2007, 

Cowen and Sponaugle 2009, Burgess et al. 2014) advocate the use of multiple methods in 

order to increase confidence in empirical estimates of larval dispersal and population 

connectivity. 

 A variety of approaches have been applied to identify the origins and the 

destinations of pelagic marine larvae (Hellberg et al. 2002, Thorrold et al. 2002, Levin 2006, 

Werner et al. 2007, Thorrold et al. 2007, Hedgecock et al. 2007, Metaxas and Saunders 2009) 

and literature therein), which fall into four main groups: visual tracking of marine larvae, 

artificial tags, natural tags, and numerical biophysical modelling. Visual tracking of individual 

larvae is the only direct method available, but can only be applied to large larvae with short 

Pelagic Larval Durations (PLDs) and thus has limited applicability. The remaining techniques 

have been extensively used, although many lack general applicability because they are 

dependent on particular life-history traits, physiology or anatomy of the target taxon or 

species. All techniques have intrinsic uncertainties that depend on type of markers, 

analytical procedures and statistical methodology. A matter of concern is how these internal 

uncertainties affect the comparison among dispersal estimates when multiple methods are 

used.  

 A literature review based on 507 research articles published since 1990 (see 

additional information in Supplementary Information 1-Literature review for definitions, a 

classification of methodologies and references) indicates that 41 studies (Miller et al. 2005, 

Galindo et al. 2006, Baums et al. 2006, Dupont et al. 2007, Bradbury et al. 2008, Piggott et al. 
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2008, Chiswell 2009, Jolly et al. 2009, Salas et al. 2009, Liu et al. 2010, White et al. 2010, Kool 

et al. 2010, Berumen et al. 2010, Galindo et al. 2010, Selkoe et al. 2010, Kool et al. 2011, 

Alberto et al. 2011, Schunter et al. 2011, Foster et al. 2012, Berry et al. 2012a, Berry et al. 

2012b, Correia et al. 2012, Domingues et al. 2012, Soria et al. 2012, Ben-Tzvi et al. 2012, 

Coscia et al. 2012, Crandall et al. 2012, Di Franco et al. 2012, Thomas and Bell 2013, Jolly et 

al. 2013, Moksnes et al. 2014, Cook et al. 2014, Simpson et al. 2014, Sunday et al. 2014, 

Schiavina et al. 2014, Davies et al. 2014, Nanninga et al. 2015, Fraker et al. 2015, Young et al. 

2015, Thomas et al. 2015, Gormley et al. 2015) have used at least two methodologies to 

estimate marine larval dispersal and connectivity matrices. The two most common 

approaches have been to use genetic markers and a numerical biophysical model, or the 

micro-chemistry of hard parts and a numerical biophysical model, but genetic markers and 

micro-chemistry, and combinations of genetic markers or micro-chemistry with current 

measurements, have also been employed.  

 The review indicates that the degree of convergence between the different methods 

is widely taken as a measure of the trust that is put on the final solution: the more 

convergent the different methods, the higher the confidence on the description of the 

dispersal process. The majority of these assessments were qualitative, expressed as verbal 

descriptions of the patterns of dispersal that were obtained, with particular emphasis on the 

spatial coincidence of observed or predicted barriers to dispersal. A variety of methods were 

employed to produce semi-quantitative assessments (different approaches tested 

separately for significance, followed by numerical comparison of the test statistics) and 

quantitative assessments (a test statistics of the fit between the dispersal estimated by the 

different approaches was calculated and assessed), depending on the type of dispersal 

metrics that was employed: assessments of proportional variability explained by separate 

observed and predicted genetic isolation-by-distance (Alberto et al. 2011) or by separate 

isolation-by-geographic distance and isolation-by-oceanographic distance regressions (White 

et al. 2010, Davies et al. 2014, Thomas et al. 2015), Mantel tests between observed and/or 

predicted distance matrices (Dupont et al. 2007, Foster et al. 2012, Berry et al. 2012a, 

Sunday et al. 2014, Young et al. 2015), log Bayes factors analysis that the predicted genetic 

structure fits the observed genetic structure (Crandall et al. 2012), sums of squared 

differences between predicted and observed allele frequencies (Galindo et al. 2010), 

multiple regression of genetic distance on oceanographic distance and environmental 

variables (Selkoe et al. 2010), MANOVA of elemental ratios of individuals assigned to groups 
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based on parentage (Berumen et al. 2010), and correlation between connectivity matrices 

(Schunter et al. 2011). 

 An important consideration on the use of empirical methods or models to infer 

dispersal and population connectivity is the confidence on the assignment to the population 

of origin. The empirical methods used by previous studies assign larvae or recruits to 

putative parental populations on a probabilistic fashion (based on assumptions of probability 

distributions of alleles or elements, number and size of populations, and other demographic 

processes), and have intrinsic uncertainties (Kaplan et al. 2016). Three studies that did 

estimate a connectivity matrix based on genetics or elemental fingerprinting did explicitly 

incorporate this uncertainty into the decision of allocating larvae or recruits to parental 

populations, by specifying a posterior probability threshold for correct assignment (from 

0.70 to 0.95; (Schunter et al. 2011, Simpson et al. 2014, Fraker et al. 2015), while five studies 

simply allocated larvae or recruits to a given population when the posterior probability of 

pertaining to this population was higher than that of pertaining to any other population 

(Miller et al. 2005, Bradbury et al. 2008, Alberto et al. 2011, Thomas and Bell 2013, Nanninga 

et al. 2015). Numerical biophysical models also have intrinsic uncertainties associated with 

different biological and oceanographic causes (Werner et al. 2007, Metaxas and Saunders 

2009). Typically, the studies reviewed here provided some kind of temporal integration or 

used multiple runs with different environmental forcings, in order to smooth seasonal and 

inter-annual variability in currents. None of the studies provided information on sensitivity 

of the model to parameterization of sub-grid processes, nesting or resolution, although 

several of the studies were based on oceanographic models that have been extensively 

tested elsewhere (e. g. Galindo et al. 2006, Kool et al. 2010, 2011, Berry et al. 2012a, 2012b,  

Domingues et al. 2012). Most studies assumed fixed values for biological parameters, based 

on literature data, although a few used different biological scenarios in separate runs of the 

model.  

 Advancements on the merging of independent approaches to describe dispersal 

patterns have been to use connectivity matrices derived from biophysical models into 

population genetic models, in order to predict genetic structure.  If the predicted genetic 

structure matches the observed structure, a case is made that migration mediated by 

oceanographic patterns of propagule transport influences gene flow. These studies used a 

derivation of the Bodmer and Cavalli-Sforza (Bodmer and Cavalli-Sforza 1968) matrix model 

of migration to predict equilibrium allele frequencies after a variable number of generations 

(White et al. 2010, Kool et al. 2010, 2011, Foster et al. 2012, Young et al. 2015), or used 
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modelled pairwise migration probabilities to inform a population model predicting allele 

frequencies at equilibrium (Galindo et al. 2006, 2010, Sunday et al. 2014). 

Most studies reviewed above used numerical biophysical models to obtain independent 

estimates of dispersal that could either be compared to empirical estimates, or that could 

feed population genetic models. None of the studies presented the models in a framework 

of model validation against observations, nor were they concerned with the uncertainty 

inherent to the empirical measurements of connectivity when comparing predictions of the 

models to empirical observations (Hannah 2007, Bellocchi et al. 2010). Only three studies 

explicitly accounted for uncertainty into the decision of allocating larvae or recruits to 

parental populations (Schunter et al. 2011, Simpson et al. 2014, Fraker et al. 2015), and only 

(Schunter et al. 2011) attempted a formal quantitative comparison between model 

predictions and observations. This uncertainty can be very large and probably depends on 

the number of populations. In Schunter et al. (2011), which included 13 populations, 68% 

(262 in 382) individuals were discarded by applying a threshold level for correct assignment 

of 80%. In Simpson et al. (2014), which considered only two populations, slightly less than 

20% of the individuals were classified as unknowns, for a 0.95 probability of correct 

allocation. 

 Our review of the literature indicates that many of the studies did not use stringent 

rules to assign dispersers to their natal populations based on their probabilities of correct 

assignment, and when they did they did not investigate why these probabilities might vary, 

nor how the confidence level used would affect comparison among estimates. Thus, there is 

a clear need to explicitly address the challenges of comparing dispersal estimates across 

methods while addressing the issue of uncertainty in order to i) reduce this uncertainty 

wherever possible and ii) demonstrate that the convergent solution provides a robust 

estimate of the connectivity matrix.  

 In the present paper we addressed this issue in the Mediterranean mussel, Mytilus 

galloprovincialis Lamarck, using elemental fingerprinting and a numerical biophysical model. 

Our geographical domain is the west coast of the Iberian Peninsula. To do so we 

manipulated the observed (empirically-derived) connectivity matrix by applying different 

confidence levels to the assignment of recruits to the source populations. Recruits that failed 

to pass the prescribed confidence level were assigned to an unknown category. We 

manipulated the modelled connectivity matrix by using different population and larval 

biology scenarios. Moreover, we simulated the intrinsic variability of the geochemical signal 

by classifying modelled recruits as unknowns in a proportion equivalent to the 



Chapter IV 

132 
 

misclassification rate of the larvae to their own sources, which is a measure of the inherent 

variability of the elemental profile. A second source of uncertainty was addressed by also 

classifying as unknowns the modelled recruits that originated outside the region for which 

elemental data was available. We demonstrate that the degree of convergence between the 

observed and modelled matrices increased as the proportion of recruits classified as 

unknowns approached the modelled proportion of unknowns, and that the increase in 

convergence is significantly different from that obtained with a random classification of 

recruits into an unknown origin.  

 

4.2 Methods 

 

 4.2.1 Elemental fingerprinting and the generation of observed connectivity 

 matrices 

 The methodology used to obtain an atlas of geochemical natal signatures and for 

establishing the natal origin of the recruits is described in Gomes et al. (2016). In brief, this 

methodology consisted of growing early laboratory-produced mussel embryos for 6 days 

inside incubators deployed in the field until a larval shell had clearly developed (70 to 140 

μm shell length). Incubators were deployed at approximately 20 km intervals along the 

central coast of Portugal (Fig. 4.1), which is characterized by extensive rocky shores and is 

delimited by long stretches of almost continuous sandy shores to the north (150 km) and 

south (50 km). Six weeks after the start of the incubations, mussel juveniles were collected 

from rocky shores adjacent to each incubation site. Given the expected larval and juvenile 

growth rates at the temperature recorded during the study period (June-July of 2013), the 

time window of larval incubation should coincide with the period when the sampled recruits 

were produced. Larval shells and the larval portion of the recruits' shells were then 

subjected to LA-ICPMS analysis using standard protocols (see Gomes et al. (2016) for 

detailed methodology). 
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Figure 4.1 - Map of larval incubation stations and juvenile sampling sites. Estremadura North: 

Berlengas, Peniche and Foz do Arelho. Estremadura South: Porto Novo, Samarra and Praia das Maçãs. 

Cascais Bay: Cabo Raso and Bafureira. Arrábida Bay: Cabo Espichel, Cova da Mijona and Alpertuche. 

For better visualization purposes, moorings in the map are illustrated more offshore than in the field 

(deployed at a depth of 15 to 20 m). Adapted from Gomes et al, 2016. 

 

 A jack-knifed linear Discriminant Function Analysis (DFA) of element-to-calcium 

ratios applied to the larval data produced a relatively low reclassification success at the site 

level (43.7% of cross-validated cases correctly classified), but a better discrimination at the 

region level (79.5%) when considering three regions: Estremadura (sites Berlengas, Peniche 

and Foz do Arelho, Porto Novo, Samarra and Praia das Maçãs), Cascais Bay (sites Cabo Raso, 

Bafureira) and Arrábida Bay (sites Cabo Espichel, Cova da Mijona, Alpertuche). An 

intermediate reclassification success (68.3%) was obtained when considering four regions, 

by splitting the large Estremadura region into two: Estremadura North (Berlengas, Peniche 

and Foz do Arelho) and Estremadura South (Porto Novo, Samarra and praia das Maçãs). A 

Monte-Carlo cross-validation technique (Simmonds et al. 2014) indicated that randomly 

discarding up to 80% of the larvae did not have significant effects on the misclassification 

error relative to the full data set, confirming the capability to detect distinctive signatures 
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for each region and sufficient sampling effort to account for variability within each region 

(Simmonds et al. 2014).  

 The discriminant functions trained with the larval data were then used to assign 

recruits to natal origins, at the regional level, and to generate a series of observed 

connectivity matrices that differed depending on the confidence level applied during the 

assignment procedure. DFA assigns objects to previously defined groups based on the 

multivariate probability distribution of the dependent variables across objects within each 

group (Quinn and Keough 2002). DFA calculates the posterior probabilities of each object 

belonging to each group and assigns an object to a specific group if the probability of 

pertaining to that group is higher than the probability of pertaining to the remaining groups, 

independently of the magnitude of probability differences. In the present case this 

introduces a source of uncertainty associated with the inter-individual variability of the 

elemental profile, which may result in incorrectly assigned recruits (Type 2 recruits; see 

below). Additionally, when assigning objects to groups DFA assumes that all objects belong 

to one of the a priori defined groups, and to none other. Our data set presumably violates 

this assumption because there is the possibility that recruits could have originated from 

outside the sampled region (Type 3 recruits; see below), although this should be minimized 

by the isolation of the sampled region by long stretches of coastline devoid of mussels. In 

order to account for these inherent types of uncertainty we used different confidence levels 

during the assignment procedure (Assignment Probability Thresholds, APT), based on the 

posterior probability thresholds of originating from the different populations: better-than-

the-rest (none of the recruits classified as of unknown origin; recruits assigned to the 

population to which they have the better probability of belonging), 0.50, 0.75, 0.90, 0.95 and 

0.99 (Table 4.1). These APT cover the range of confidence levels used in most practical 

applications and allowed us to test the sensitivity of the compliance between observed and 

modelled connectivity matrices to the confidence level used for generating the observed 

connectivity matrix. 
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Table 4.1 Definitions and codes of types of recruits, spawning regimes, larval behaviours, matrix 

spatial arrangements and assignment probability thresholds. 

 

Types of recruits or Scenarios Code 

Types of recruits  

Recruits originating within the core region that are positively assigned to a specific 
origin. 

Type 1 

Recruits originated within the core region but of uncertain origin because of a natal 
signature not distinct enough to warrant a positive assignment to a specific origin.  

Type 2 

Recruits originated outside the core region and of unknown origin because of an 
unknown natal signature. 

Type 3 

Spawning regimes  

  
Continuous larval emission during each high tide until July 12. S1 

Continuous larval emission during each high tide until June 30; from that day on, 
discontinuous larval emission, skipping one of every two high tides until July 12. 

S2 

Continuous larval emission during each high tide until June 30; from that day on, 
discontinuous larval emission, skipping two of every three high tides, until July 12. 

S3 

Continuous larval emission during each high tide until July 1; from that day on, no more 
larvae were released. 

S4 

Larval behaviours  

  
Passive larvae. Pa 

Ontogenetic migration from a depth around 5 m until the pediveliger stage, followed by 
a migration to a depth around 12.5 m. 

Om 

Larvae dwelling in the bottom layer in shallow water and from 30 - 50 m deeper water. Bl 

Spatial arrangements  

  
Origins: Estremadura, Cascais Bay and Arrábida Bay. Destinations: Estremadura, Cascais 
Bay and Arrábida Bay. 

3x3 

Origins: Estremadura, Cascais Bay and Arrábida Bay. Destinations: Estremadura North, 
Estremadura South, Cascais Bay and Arrábida Bay. 

3x4 

Origins: Estremadura North, Estremadura South, Cascais Bay and Arrábida Bay. 
Destinations: Estremadura North, Estremadura South, Cascais Bay and Arrábida Bay. 

4x4 

Assignment Probability Thresholds  

  
None of the recruits classified as of unknown origin; recruits assigned to the population 
to which they have the better probability of belonging. 

Better-than-
the-rest 

Recruits classified as of unknown origin if the highest posterior probability of assignment 
was lower than the indicated value; otherwise, assigned to the population to which they 
have the better probability of belonging. 

0.50, 0.75, 
0.90, 0.99 
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 4.2.2 Biophysical numerical model and the generation of modelled connectivity 

 matrices 

 The biophysical numerical model included two components: a nested oceanographic 

model based on the Regional Ocean Modelling System (ROMS), which produced velocity and 

temperature fields at 1 h intervals; and a biological model, implemented through a 

Lagrangian offline model that simulated the spatial and temporal distribution of mussel 

spawning, larval vertical migration behaviour, temperature-dependent planktonic larval 

duration and larval trajectories, based on the stored ROMS velocity and temperature fields 

interpolated at 300 s intervals. The nested model included a large domain extending from 

12.5°W to 5.5°W and 34.4°N to 45.5°N (resolution of 1/27°; 60 vertical levels), which was 

used to provide boundary conditions to a medium domain corresponding to the West 

Iberian Margin (WIM; Cape St Vincent at 37° N to Cape Finisterre at 43° N, and from 11.5° W 

to the WIM coast at 8.5° W; resolution 1/60°; 45 levels). The medium domain was the target 

domain used for the dispersal simulations and was connected by two-way nesting to a small 

domain (from Figueira da Foz at 40.2° N to Sines at 37.8° N, extending to 10.5° W; resolution 

1/180°, 45 levels), which encompassed the main region where natal and recruit signatures 

were collected (Fig. 4.1). A number of larvae proportional to the mussel biomass at each 

segment of the coast (Siregar 2014) and to seasonal spawning activity (Philippart et al. 2012) 

was released adjacent to each rocky shore cell of the model and allowed to grow at a rate 

dependent on the thermal history predicted by ROMS, until a competent phase was reached 

(Ruiz et al. 2008, Pettersen et al. 2010). If a larva found a rocky shore cell during the 

competent phase it was allowed to recruit; otherwise it would die. Because numerical 

models poorly resolve the coastal boundary layer where non-linear processes predominate 

(Nickols et al. 2012), a coastal buffer strip of 3 cells along the rocky shore was used as a 

settlement habitat. A more complete account of the biophysical model, environmental 

forcing and validation information based on (Bayne 1964, Chia et al. 1984, Lutz and Kennish 

1992, Villalba 1995, Caceres-Martinez and Figueras 1998, Mcquaid and Phillips 2000, 

Metaxas 2001, Egbert and Erofeeva 2002, Qiu et al. 2002, Phillips 2002, Pernet et al. 2003, 

Shanks and Brink 2005, Shchepetkin and McWilliams 2005, Peliz et al. 2007, Ruiz et al. 2008, 

Skamarock et al. 2008, Carr et al. 2008, Rilov et al. 2008, Sameoto and Metaxas 2008, 

Oliveira et al. 2009, Pettersen et al. 2010, Daigle and Metaxas 2011, Fuchs and DiBacco 

2011, Domingues et al. 2012, Sanchez-Lazo and Martinez-Pita 2012, Philippart et al. 2012, 

Nolasco et al. 2013, Nolasco, Pires, et al. 2013, Gomes et al. 2016) can be found in the 

Supplementary Information 2-Biophysical model. 
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 4.2.3 Accounting for uncertainty: recruit origin and the construction of observed 

 and modelled connectivity matrices 

 The Observed connectivity matrix refers to the geographical area for which natal 

and recruit elemental fingerprints were collected. The biophysical model covers a wider 

region, with additional origin and destination populations. Therefore, the Modelled 

connectivity matrix is larger than the Observed connectivity matrix. In the following 

description, whenever we refer to the core connectivity matrix(ces) we are referring to the 

area from where elemental fingerprints were sampled. 

 When constructing the Observed connectivity matrix, the decision on the 

assignment of each recruit to a particular population of origin depends on the confidence 

level we wish to put in the assignment, i. e. depends on the selected posterior probability 

threshold of pertaining to that specific origin. With a higher confidence level we increase the 

number of unassigned recruits. In each particular case the unassigned individual has one of 

two possible origins: it may have originated within the core region but the elemental 

fingerprint of the origin is not distinct enough to warrant a positive assignment to the source 

population (Type 2 recruits in Fig. 4.2); or it may have originated from a population outside 

the core region (Type 3 recruits in Fig. 4.2). Type 2 recruits should be part of the connectivity 

core matrix but have to be assigned to an unknown origin. Type 3 recruits are not part of the 

core connectivity matrix because they originated outside the core region. They are also 

assigned to an unknown origin, because the natal signature of the population of origin is 

unknown. Type 1 recruits are those that are positively assigned to a specific origin 

population in the core matrix (see Fig. 4.2). 
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Figure 4.2 Observed (A) and Modelled (B) connectivity matrices for the 3 by 3 subdivision of the core 

region. The arrows illustrate the assignment of recruits into the populations of origin. Type 1 recruits 

(1): individuals recruited into the core region that originate within the core region and are assigned to 

origins within the core region. Type 2 recruits (2): individuals recruited into the core region that 

originate within the core region; assignment in the Observed matrix is not possible because of a 

poorly defined natal fingerprint and they are classified as unknowns; in the Modelled matrix they are 

classified as unknowns based on the probability of incorrect self-assignment of the larvae. Type 3 

recruits (3): individuals recruited into the core regions that originate outside the core region; 

assignment in the Observed matrix is not possible because of an unregistered natal fingerprint and 

they are also classified as unknowns; in the Modelled matrix they are classified as unknowns to 

simulate the lack of knowledge about their natal signature. 

 

 The Modelled, connectivity matrix is not affected by these sources of uncertainty 

because all recruits, irrespective of their origin and destination, can be "tracked back" by the 

model to their original populations (actually they are tracked forward from origin to 

destination or death). We simulated the uncertainty in the observations caused by the fact 

that the natal elemental signature is not distinctive enough to allow a positive assignment in 

all cases. To do this we assigned an unknown origin to a number of recruits into the core 

region that originated inside the core region, proportionally to the misclassification rate of 
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the larvae. This forced some of the modelled recruits into Type 2 (see Fig. 4.2). All modelled 

recruits originating outside the core region but recruiting here are Type 3 recruits and not 

part of the connectivity matrix by definition (see Fig. 4.2). We also assigned these individuals 

to an unknown origin in order to simulate the lack of knowledge about their natal signature. 

Based on the observed elemental fingerprints a few of them would falsely be assigned to an 

origin within the core region because of an unclear natal fingerprint. This uncertainty cannot 

be simulated. We could predict the proportion of the modelled recruits that should falsely 

be classified into the core region based on the misclassification rate of the larvae (by 

assuming an average value of this rate for the whole area), but there is no way of predicting 

to which population of the core region these recruits should be assigned to. We assume this 

source of uncertainty is negligible because: i) the further away from the core area the likelier 

that the natal signatures differ from those of the core area, reducing the probability of 

falsely assigning these recruits to an origin inside the core area; and ii) there are long 

stretches of sandy shores to the north and south of the core area, effectively reducing the 

number of Type 3 recruits. 

 Given the above, we generated a series of Observed connectivity matrices that 

differed (see below) in the number of the partitions of the core region (3 different 

arrangements) and confidence level (6 levels). We also generated a series of Modelled 

connectivity matrices that differed (see below) in spawning regime (4 regimes), larval 

behaviour (3 behaviours) and partitioning of the core region (3 different arrangements). We 

corrected the core Modelled matrix for Type 2 recruits by subtracting from the predicted 

recruits in each cell a number proportional to the misclassification rate of the corresponding 

origin. Each row of the Modelled core matrix was therefore corrected by a different 

proportion. Modelled Type 2 and Type 3 recruits were included in an unknown row. 

Observed recruits that failed to pass the confidence level threshold were also included in an 

unknown row. In the above comparisons, Observed and Modelled matrices were 

standardized by dividing the number of recruits into each destination by the total number of 

recruits that settled into that destination, i. e. by the sum of the respective column. The 

rationale for this standardization is that the sampling of recruited individuals was 

constrained to an approximately constant number of individuals in each location, and did 

not reflect the distribution of settlement intensity among the sites. In contrast, the number 

of recruits predicted by the biophysical model did reflect the distribution of settlement 

intensity, because it incorporates not only the pattern of connectivity, but also the total 

number of larvae "hatched" in the model. That standardization allowed us to compare 
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relative numbers of recruits into each destination originating from the different origins in 

both matrices.  

 

 4.2.4 Accounting for uncertainty: mussel biology scenarios 

 In order to bracket the uncertainty regarding larval production and behaviour, we 

considered 4 scenarios of spawning regime and 3 scenarios of larval behaviour, and ran the 

biophysical model for all 12 combinations. The spawning regime scenarios attempted to 

simulate the reproductive exhaustion of individuals subsequent to the peak of gamete 

emission in spring/early summer described for the Iberian Peninsula, as described by Suárez 

et al. (2005) and Philippart et al. (2012). Thus, the different regimes (Table 4.1) included 

constant larval spawning during high tide (mussels spawn only when submersed) along the 

entire rocky shore coast proportionally to population density during spring and early 

summer, followed by a progressive decline in larval emission towards the end of July, 

according to the following criteria: (S1) continuous larval emission during each high tide until 

July 12; (S2) continuous larval emission during each high tide until June 30; from that day on, 

discontinuous larval emission, skipping one of every two high tides until July 12; (S3) 

continuous larval emission during each high tide until June 30; from that day on, 

discontinuous larval emission, skipping two of every three high tides, until July 12; and (S4) 

Continuous larval emission during each high tide until July 1; from that day on, no more 

larvae were released. The larval behaviour scenarios (Table 4.1) included: (Pa) completely 

passive larvae, as implied by Mcquaid and Phillips (2000); (Om) an ontogenetic migration 

from a depth around 5 m until the pediveliger stage, followed by a migration to a depth 

around 12.5 m, according to studies suggesting larvae tend to migrate deeper in the water 

column during development (Rilov et al. 2008, Fuchs and DiBacco 2011); and (Bl) larvae 

dwelling in the bottom layer in shallow water and from 30 to 50 m in deeper water; this 

unrealistic scenario was intended to provide a contrast to the other two scenarios. 

 

 4.2.5 Arrangement of the core matrix 

 We used 3 arrangements of the core connectivity matrix (Table 4.1) that were 

derived from a priori considerations about the oceanography and geometry of the region 

(which includes open coasts, capes, bays and coastal mountains), which can influence the 

probability of imprinting distinctive natal signatures (Levin 2006, Thorrold et al. 2007). The 

first was a 3x3 arrangement, with sampling sites for both origin and destination grouped into 

Estremadura, Cascais Bay and Arrábida Bay. This arrangement is based on the expectation of 
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a distinct signature in the bays, caused by the influence of the Tagus and Sado rivers, and of 

a homogeneous signature along the more exposed Estremadura coast. In the second (3x4) 

and third (4x4) scenarios we kept the Cascais and the Arrábida bay regions, but made a 

distinction between the Estremadura North and South sections, separated by Cape 

Carvoeiro. This major cape induces strong and recurrent filament activities in response to 

upwelling events, which affect local oceanography and decouple to some degree both 

sections of the coast (Oliveira et al. 2009, Cordeiro et al. 2015). In the second scenario we 

expect a common natal signature for the whole Estremadura coast, but distinct settlement 

zones (Estremadura North and South) due to a two-cell circulation caused by the 

topographic influence of the cape. The third scenario considers the Estremadura North and 

South partition for both emission and settlement zones, based on the expectation of distinct 

natal signatures and circulation cells. 

 

4.3 Results 

 

 4.3.1 Generation of observed and modelled connectivity matrices 

 The distributions of posterior probabilities of mussel recruits pertaining to each of 

the putative origins differed markedly among regions, for both the 3-region (Fig. 4.3) and 4-

region (Fig. 4.4) connectivity matrices. In both cases Arrábida Bay was the most important 

source, with either 62 (APT - 0.99) or 82 (APT - 0.90) recruits originating from this region, 

when considering 3 regions, and either 61 (APT - 0.99) or 83 (APT - 0.90) recruits originating 

from this region, when considering 4 regions. In contrast, the number of recruits with 

assignment probabilities <0.90 was very similar among regions in the case of 3 regions (26, 

26 and 25 for Arrábida, Cascais and Estremadura), but considerably more variable in the case 

of 4 regions (28, 20, 5 and 46 for Arrábida, Cascais, Estremadura North and Estremadura 

South). Thus, largely regardless of the method applied, Arrábida Bay was the main source of 

recruits to the different regions during the period of the study (see also Simmonds et al. 

2014).  
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Figure 4.3 Posterior probabilities of assignment of mussel recruits into three putative origins, based 

on linear discriminant functions trained with larval shell elemental profiles. 

 

 
 
Figure 4.4 Posterior probabilities of assignment of mussel recruits into four putative origins, based on 

linear discriminant functions trained with larval shell elemental profiles. 
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 To compare connectivity matrices estimated by the two methods (geochemical 

fingerprint vs biophysical model), we based our analysis first on the Observed and Modelled 

connectivity matrices uncorrected for unknowns, and then on matrices corrected for both 

Type 2 and Type 3 recruits (Table 4.2). We did this because the elemental fingerprinting 

technique and the DFA cannot distinguish between the two sources of uncertainty, and 

therefore comparisons based on each correction separately are uninformative. However, we 

provide the full set of comparisons in the Supplementary Information 3-Matrix correlations.  

 From the set of comparisons without correcting for unknowns, the best correlations 

correspond to the 3x3 spatial grids, reaching correlation coefficients over 0.90 for several 

scenarios of spawning and larval behaviour (Table 4.2). However, when larvae were forced 

to dwell in the bottom layer (Bl) the correlations decreased dramatically (to an average of 

0.44 correlation). The 3x3 spatial grid scenarios that incorporated passive (Pa) or 

ontogenetic behaviours (Om), and simulated reproductive exhaustion (progressive decline in 

larval emission towards the end of the study period, S3 and S4), produced high correlation 

coefficients between the two matrices. This was particularly true (average 0.93 correlation) 

when no larvae were released from July onwards (S4). Using spatial grids with higher spatial 

resolution (3x4 and 4x4 matrixes) caused the correlations to drop progressively, although 

they were still elevated (r> 0.70) in some scenarios. This reduction is related to a decrease in 

accuracy of recruit assignment based on shell geochemistry, as the signatures are not 

distinct at this spatial resolution (DFA reclassification success for the larvae in Gomes et al. 

(2016)). In both 3x3 and 4x4 arrangements, recruits predicted by the biophysical model to 

settle in the Estremadura (north and south) region showed the worst fit to the observations, 

but the model was well fitted to describe natal origins for recruits which settle in the 

Arrábida Bay, and to a lesser degree in the Cascais Bay (Supplementary Information 4-Matrix 

adjustment). When we changed the APT (Table 4.2), we obtained a similar pattern for most 

combinations, where best model fits correspond to thresholds around 0.75-0.95. The less 

restrictive scenario (APT better-than-the-rest and 0.50) showed the lowest correlation 

between Observed and Modelled matrices, with the exception of the 4x4 core matrices 

scenarios. For APTs of 0.75 to 0.99, correlations were quite similar for most of the scenarios, 

and maxima often fell around 0.90. That seems to indicate that the model reproduces the 

observed data when we maintain a moderate to high threshold, except for the 4x4 scenarios 

where the uncertainty of the geochemical data is higher.
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Table 4.2 Pearson correlation coefficients between Observed and Modelled connectivity matrices for different combinations of larval behaviour, spawning regime, 

partitioning of the core region, and confidence level of the assignment of recruits into source populations. The top section refers to the core matrices without correction 

for unknowns; the bottom section refers to the core matrices plus unknown's row, where the modelled matrix was corrected for Type 2 and Type 3 recruits simultaneously. 

Shading indicates strength of the correlation; bold values indicate the highest correlation in each section. 

 

CORE MATRICES (without 
unknown row); uncorrected 
modelled matrix 

Larval behaviour / Spawning regime combinations 

PaS1 PaS2 PaS3 PaS4 OmS1 OmS2 OmS3 OmS4 BlS1 BlS2 BlS3 BlS4 

Partitioning of 
the core region 

/ Confidence 
level 

combinations 

3x3%99 0.64 0.72 0.77 0.87 0.58 0.67 0.75 0.82 0.28 0.31 0.34 0.38 

3x3%95 0.77 0.84 0.88 0.94 0.71 0.79 0.86 0.90 0.41 0.44 0.47 0.51 

3x3%90 0.77 0.84 0.88 0.94 0.72 0.80 0.86 0.91 0.41 0.44 0.47 0.50 

3x3%75 0.80 0.86 0.90 0.96 0.74 0.82 0.88 0.92 0.45 0.49 0.52 0.55 

3x3%50 0.79 0.85 0.89 0.94 0.72 0.80 0.87 0.91 0.41 0.44 0.47 0.51 

3x3 Better 0.77 0.83 0.88 0.93 0.70 0.78 0.85 0.89 0.38 0.42 0.45 0.49 

3x4%99 0.41 0.48 0.53 0.63 0.40 0.49 0.56 0.61 0.15 0.17 0.19 0.22 

3x4%95 0.61 0.67 0.71 0.79 0.59 0.67 0.73 0.78 0.33 0.36 0.38 0.41 

3x4%90 0.62 0.69 0.72 0.80 0.60 0.68 0.75 0.79 0.34 0.37 0.39 0.41 

3x4%75 0.62 0.68 0.72 0.79 0.61 0.69 0.74 0.77 0.37 0.39 0.42 0.44 

3x4%50 0.59 0.65 0.69 0.75 0.58 0.66 0.72 0.74 0.32 0.35 0.37 0.40 

3x4 Better 0.56 0.62 0.66 0.72 0.55 0.63 0.69 0.71 0.29 0.31 0.34 0.36 

4x4%99 0.40 0.47 0.50 0.60 0.38 0.46 0.52 0.56 0.13 0.15 0.17 0.19 

4x4%95 0.42 0.49 0.53 0.61 0.41 0.49 0.55 0.58 0.16 0.18 0.20 0.22 

4x4%90 0.52 0.58 0.61 0.68 0.51 0.57 0.62 0.63 0.25 0.26 0.29 0.29 

4x4%75 0.63 0.68 0.71 0.76 0.61 0.66 0.70 0.68 0.35 0.36 0.38 0.37 

4x4%50 0.66 0.71 0.73 0.78 0.64 0.69 0.73 0.70 0.38 0.38 0.41 0.40 

4x4 Better 0.65 0.70 0.72 0.76 0.64 0.69 0.72 0.69 0.37 0.38 0.40 0.38 
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CORE MATRICES + 
UNKNOWNS; modelled 
matrix corrected for Type 2 
and Type 3 recruits 

Larval behaviour / Spawning regime combinations 

PaS1 PaS2 PaS3 PaS4 OmS1 OmS2 OmS3 OmS4 BlS1 BlS2 BlS3 BlS4 

Partitioning of 
the core region 

/ Confidence 
level 

combinations 

3x3%99 0.47 0.55 0.61 0.76 0.51 0.58 0.62 0.71 0.07 0.09 0.11 0.14 

3x3%95 0.63 0.71 0.77 0.88 0.65 0.72 0.76 0.83 0.20 0.23 0.25 0.28 

3x3%90 0.69 0.77 0.83 0.93 0.71 0.78 0.83 0.88 0.26 0.29 0.32 0.35 

3x3%75 0.70 0.77 0.82 0.88 0.70 0.77 0.82 0.83 0.36 0.39 0.42 0.45 

3x3%50 0.57 0.63 0.66 0.66 0.55 0.61 0.65 0.63 0.35 0.37 0.39 0.41 

3x3 Better 0.53 0.58 0.62 0.61 0.50 0.56 0.60 0.57 0.33 0.35 0.38 0.40 

3x4%99 0.55 0.60 0.63 0.73 0.52 0.57 0.61 0.67 -0.06 -0.04 -0.03 -0.02 

3x4%95 0.63 0.70 0.74 0.83 0.60 0.66 0.71 0.76 0.08 0.10 0.11 0.13 

3x4%90 0.63 0.70 0.74 0.83 0.59 0.66 0.72 0.78 0.16 0.18 0.20 0.22 

3x4%75 0.56 0.63 0.67 0.73 0.54 0.61 0.67 0.70 0.28 0.30 0.31 0.33 

3x4%50 0.32 0.37 0.39 0.42 0.31 0.36 0.41 0.42 0.30 0.31 0.33 0.34 

3x4 Better 0.25 0.30 0.32 0.35 0.24 0.30 0.34 0.35 0.28 0.29 0.31 0.32 

4x4%99 0.89 0.90 0.90 0.92 0.84 0.85 0.86 0.86 0.47 0.46 0.48 0.43 

4x4%95 0.89 0.92 0.93 0.96 0.86 0.88 0.90 0.92 0.48 0.47 0.49 0.45 

4x4%90 0.86 0.90 0.91 0.95 0.83 0.86 0.89 0.91 0.47 0.46 0.49 0.45 

4x4%75 0.75 0.79 0.82 0.86 0.73 0.78 0.81 0.83 0.45 0.44 0.47 0.43 

4x4%50 0.33 0.38 0.41 0.46 0.32 0.38 0.43 0.45 0.22 0.23 0.25 0.25 

4x4 Better 0.21 0.26 0.29 0.34 0.21 0.27 0.32 0.34 0.14 0.15 0.17 0.17 
 
Pa= passive larvae. Om= larvae migrating ontogenetically. Bl= larvae dwelling in the bottom layer. S1= continuous larval emission during each high tide until July 12. S2= 
continuous larval emission during each high tide until June 30, then larval emission skipping one of every two high tides until July 12. S3= continuous larval emission during 
each high tide until June 30, then larval emission skipping two of every three high tides until July 12. S4= Continuous larval emission during each high tide until July 1, no 
more larvae released afterwards. 3x3, 3x4 and 4x4= spatial organization of the core region into 3 or 4 origin x destination cells. Better than the rest= recruits assigned into 
an origin when the probability of pertaining to that origin is better that that of pertaining to any other origin. %99, %95, %90, %75, %50= recruits assigned into an origin 
when the probability of pertaining to that origin is larger than the level indicated. 
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 If we now take into consideration the recruits of unknown origin (Type 2 and Type 3, 

i.e. all the ones that failed to be successfully classified to one of the possible origins; Table 

4.2) a different picture emerges. The contrasts between larval behaviours and spawning 

regimes still followed the same patterns as in the preceding case, but now the effect of 

increasing spatial resolution differs. When we corrected for Type 2 and Type 3 (Table 4.2) 

the correlations increased considerably in the higher spatial resolution scenarios. This effect 

is related to the increase in the number of unknowns in the geochemical classification with 

increasing spatial resolution, resulting in an improved fit between the observed and 

predicted recruits in the 4x4 grid, especially in the Estremadura region (Supplementary 

Information 4-Matrix adjustment). It is interesting to note that the biophysical model very 

accurately described natal origins for the Arrábida recruits as well, followed by those that 

recruited into Cascais. Again, we observed the same pattern as before, with higher 

correlations with APTs between 0.75 and 0.95 (Table 4.2). 

 

 4.3.2 Assessing the causes of convergence between observed and modelled 

 connectivity matrices 

 Independently of whether we consider only the core connectivity matrices, or the 

connectivity matrices with an unknown row (origin), increasing the APTs increased matrix 

correlations up to a point between 0.75 and 0.95, after which matrix correlations decreased 

again (Table 4.2). Given this pattern, we make two predictions. The first prediction is that 

this effect is different from a random deletion of recruits from the Observed matrix. 

Increasing the confidence level from the "better-than-the-rest" case is akin to removing 

outliers from the Observed matrix, so we should expect that removing recruits at random 

would not result in an increased correlation. On the other hand, by being too strict in the 

assignment of recruits we could be removing individuals from the Observed matrix that are 

correctly classified, resulting in a decreased correlation. The second prediction is that the 

number of excluded recruits that provides the best correlation should logically match the 

number of those with a poorly defined elemental signature, plus those that originate from 

outside the core region. The first case reflects the compounded effect of assigning recruits 

to an unknown origin based on the misclassification rate of the larvae into their source 

population (i.e. the proportion of larvae incorrectly self-assigned in each region), which is a 

measure of the inherent variability of the elemental signature. That number is the number 

of Type 2 recruits that are assigned to the unknown row in the Modelled connectivity matrix. 

The second case is the number of Type 3 recruits. 
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 We tested both predictions only for the core connectivity matrices, and for the 

connectivity matrices with an unknown row composed of Type 2 and Type 3 recruits, for the 

combination of continuous larval emission during each high tide until July 1 (S4) and passive 

larvae (Pa), which were the best biological scenarios overall, and for all spatial arrangements 

of the core matrix (3x3, 3x4 and 4x4). We used a bootstrap approach in order to test the first 

prediction. For each APT (0.50, 0.75, 0.90, 0.95 and 0.99) we generated 1000 Observed 

connectivity matrices by randomly discarding, from the better-than-the-rest matrix, a 

number of recruits equal to the sum of the worst classified recruits into every source. Each 

of the 1000 randomly adjusted Observed matrices for a given confidence level was then 

correlated with the corresponding Modelled matrix, and the frequency distribution of the 

correlation coefficients was generated. The correlation coefficient obtained from the 

comparison between the Observed matrix correctly adjusted for the confidence level and 

the Modelled matrix was then compared to that frequency distribution. To test the second 

prediction, we calculated the difference between the proportion of recruits classified as 

unknowns in the Observed matrix for each confidence level and the proportion of modelled 

unknowns, and plotted the correlation coefficient against this quantity. 

 In 19 cases out of 30 comparisons, the improvement of the matrix correlation 

obtained by increasing the APT was significantly different from that obtained by a random 

deletion of recruits from the Observed matrix (Supplementary Information 5-Prediction 1). 

The cases where the improvement was most significant corresponded to the 4x4 spatial 

arrangement (Fig. 4.5, p< 0.0001 for the 0.75, 0.90, 0.95 and 0.99 APTs), which included also 

the highest correlation coefficient obtained across all scenarios (r= 0.96, Table 4.2, passive 

larvae (Pa), cessation of spawning after July (S4), 0.95 APT, 4x4 spatial arrangement). In the 

case of the 3x3 and 3x4 spatial arrangements the matrix correlation peaked when the 

difference between observed and modelled unknown recruits approached zero (at an APT of 

0.90), and at a slightly positive value in the case of the 4x4 arrangement (at an APT of 0.95; 

Fig. 4.6).  
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Figure 4.5 Effect on the matrix correlation coefficient of randomly excluding from the observed matrix 

a number of individuals equal to the number of observed individuals correctly classified as unknowns 

for each confidence level (columns are Assignment Probability Thresholds (APTs) of 0.50, 0.75, 0.90, 

0.95 and 0.99), based on 1000 trials for each threshold. In each graph, the dashed line indicates the 

correlation coefficient that was obtained by removing those recruits that correctly failed to pass the 

APT. First row: distribution of correlation coefficients by trial number; the number of removed 

individuals is indicated above each graph. Second row: the same, but correlation coefficients ranked 

by value; the number of trials with a correlation coefficient above that obtained by removing those 

recruits that correctly failed to pass the posterior probability threshold is indicated above each graph. 

Third row: frequency distribution of the correlation coefficients. Removing the recruits that correctly 

failed to pass the APT resulted in a correlation coefficient significantly higher than that obtained by a 

random deletion of recruits at p < 0.0001 (****). "corr"= correlation coefficient. The figure only shows 

results for the 4x4 arrangement, passive larvae and the S4 spawning scenario (see Supplementary 

Information 5-Prediction 1 for other scenarios).  
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Figure 4.6 Relationship between the matrix correlation coefficient and the difference between the 

numbers of observed and modelled recruits classified as unknowns, for three different arrangements 

of the connectivity matrices. The number of observed recruits classified as unknowns changes with 

the threshold level (from left to right, APTs better-than-the-rest, then above 0.50, 0.75, 0.90, 0.95 and 

0.99). The number of modelled recruits classified as unknowns depends on the misclassification rate 

of the larvae into their source population (proportion of larvae incorrectly self-assigned in each 

region; Type 2 recruits) and on those that originate from outside the core region (Type 3 recruits). The 

figure only shows results for passive larvae and the S4 spawning scenario (see Supplementary 

Information 6-Prediction 2 for other scenarios). 

 

 Visual inspection of Observed and Modelled connectivity matrices for the 0.95 APT 

(Table 4.3; other thresholds not shown, but very similar results were obtained for 0.90; see 

also Supplementary Information 6-Prediction 2 for Type 2 and Type 3 recruits) indicates that 

the poorest performance of the model relative to the observations occurred in the 

Estremadura region. This is especially evident in the case of the 4x4 arrangement, where 

observations indicate supply to Estremadura S and Estremadura N from the southern 

regions, while the model indicates higher retention or supply from the north, especially in 

Estremadura N. Both observations and model results concur in identifying the Arrábida Bay 

as a region of high retention but also as a major supplier to Cascais and Estremadura S.
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Table 4.3 Observed and Modelled connectivity matrices obtained for the scenarios of passive larvae and cessation of spawning after July, for the 3x3, 3x4 and 4x4 spatial 

arrangements. The top six panels refer to the core matrices without correction for unknowns and the better-than-the-rest assignment probability threshold; the bottom six 

panels refer to the core matrices plus unknown's row for a 0.95 assignment probability threshold, where the Modelled matrix was corrected for Type 2 and Type 3 recruits 

simultaneously. Shading indicates the strength of connectivity. 

 

Core connectivity matrices (without correction for unknowns) 

Observed, better-than-the-rest case 
 

Modelled, without correction for Type 2 or Type 3 recruits 

        Destination 
Origin 

Estremadura Cascais Arrábida 
  

        Destination 
Origin 

Estremadura Cascais Arrábida 
 

Estremadura 34 17 9 
  

Estremadura 58 9 0 
 

Cascais 24 7 16 
  

Cascais 5 13 1 
 

Arrábida 41 77 74 
  

Arrábida 37 78 99 
 

           
        Destination 
Origin 

Estremadura 
N 

Estremadura 
S 

Cascais Arrábida 
 

        Destination 
Origin 

Estremadura 
N 

Estremadura 
S 

Cascais Arrábida 

Estremadura 33 35 17 7 
 

Estremadura 100 52 9 0 

Cascais 43 7 7 19 
 

Cascais 0 6 13 1 

Arrábida 23 57 77 74 
 

Arrábida 0 42 78 99 

           
        Destination 
Origin 

Estremadura 
N 

Estremadura 
S 

Cascais Arrábida 
 

        Destination 
Origin 

Estremadura 
N 

Estremadura 
S 

Cascais Arrábida 

Estremadura N 7 1 0 0 
 

Estremadura N 67 4 0 0 

Estremadura S 37 35 17 14 
 

Estremadura S 33 48 9 0 

Cascais 33 4 3 9 
 

Cascais 0 6 13 1 

Arrábida 23 59 80 77 
 

Arrábida 0 42 78 99 
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Connectivity matrices with unknown row 

Observed, 0.95 assignment probability threshold 
 

Modelled, corrected for Type 2 and Type 3 recruits 

        Destination 
Origin 

Estremadura Cascais Arrábida 
  

        Destination 
Origin 

Estremadura Cascais Arrábida 
 

Estremadura 14 7 0 
  

Estremadura 39 8 0 
 

Cascais 6 0 2 
  

Cascais 2 8 0 
 

Arrábida 23 63 49 
  

Arrábida 21 59 61 
 

Unknown 57 30 49 
  

Unknown 38 25 39 
 

           
        Destination 
Origin 

Estremadura 
N 

Estremadura 
S 

Cascais Arrábida 
 

        Destination 
Origin 

Estremadura 
N 

Estremadura 
S 

Cascais Arrábida 

Estremadura 17 12 7 0 
 

Estremadura 22 47 8 0 

Cascais 13 0 0 2 
 

Cascais 0 4 8 0 

Arrábida 5 38 63 49 
 

Arrábida 0 31 59 61 

Unknown 65 50 30 49 
 

Unknown 78 18 25 39 

           
        Destination 
Origin 

Estremadura 
N 

Estremadura 
S 

Cascais Arrábida 
 

        Destination 
Origin 

Estremadura 
N 

Estremadura 
S 

Cascais Arrábida 

Estremadura N 0 0 0 0 
 

Estremadura N 13 4 0 0 

Estremadura S 0 3 0 0 
 

Estremadura S 3 19 4 0 

Cascais 8 0 0 0 
 

Cascais 0 4 8 0 

Arrábida 7 43 67 51 
 

Arrábida 0 31 59 61 

Unknown 85 54 33 49 
 

Unknown 84 42 30 39 
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4.4 Discussion 

 

 4.4.1 Comparison between observed and modelled connectivity matrices 

 In the present study we manipulated an Observed connectivity matrix, derived from 

geochemical information of mussel larval and recruit shells, by applying different assignment 

probability thresholds (APTs) to the classification of recruits into the source populations 

based on the posterior probabilities of assignment. Recruits that failed to pass the 

prescribed APT were assigned to an unknown category. We also manipulated a Modelled 

connectivity matrix derived from a biophysical model by using different population and 

larval biology scenarios. Moreover, we simulated the intrinsic variability of the geochemical 

signal by classifying modelled recruits as unknowns in a proportion equivalent to the 

misclassification rate of the larvae to their own sources, which is a measure of the inherent 

variability of the elemental profile. A second source of uncertainty was addressed by also 

classifying as unknowns the modelled recruits that originated outside the region for which 

elemental data were available. We obtained a very good convergence between the two 

methods at the lowest spatial resolution when no correction for unknowns was applied, with 

correlation coefficients r up to 0.96, but a worse fit at the highest spatial resolution with r< 

0.76. When we corrected for unknowns the convergence between the two methods at the 

higher spatial resolution increased substantially to values of r> 0.80 and up to 0.93 and 0.96, 

for APTs between 0.90 and 0.95, passive or ontogenetically migrating larvae, and realistic 

spawning scenarios. As far as we know, there is no precedent for this level of convergence 

between two independent estimates of larval dispersal and connectivity at spatial scales 

below 40 km.  

 The interpretation of the fit between the two approaches requires a 

phenomenological interpretation of the dispersal process captured during this event (Gomes 

et al. 2016). The geochemical signatures indicated an overall northward dispersal of larvae, 

with those originating in the Arrábida Bay contributing disproportionally to the Cascais Bay 

and the Estremadura regions. This northward dispersal event runs contrary to the average 

circulation along the Portuguese coast during spring and summer, associated with upwelling 

circulation (Relvas et al. 2007), but is consistent with concurrent wind data that shows a 3-

week long upwelling relaxation episode that took place just prior to the sampling of the 

recruits (Gomes et al. 2016). The relaxation episode was accompanied by a distinct 

temperature increase caused by the northward advection of warm waters, which was well 

captured by the biophysical model (Supplementary Information 2-Biophysical model). The 

high correlation coefficients obtained with a 3x3 spatial arrangement of the core zone, with 
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passive and ontogenetic larval behaviour scenarios, are a consequence of the small spatial 

resolution overall (about 20, 30 and 70 km in the Cascais, Arrábida and Estremadura regions, 

respectively). As we increased spatial resolution by subdividing the Estremadura region we 

decreased the ability to assign recruits to their source populations based on the natal 

signatures, as the spatial resolution fails to be adequate to achieve good geospatial distinct 

chemical signals. However, when we incorporated the unknowns into a virtual box, both in 

the Observed and in the Modelled matrices, there still was a high correlation coefficient (r> 

0.80) for a large range of biological scenarios and APTs, reaching a maximum of 0.96. That is, 

by explicitly modelling the uncertainty sources of the elemental fingerprinting technique, we 

were able to simultaneously increase the overall spatial resolution of the analysis (20, 30, 40, 

30 km, for the Cascais, Arrábida, Estremadura south and Estremadura north regions, 

respectively) and the fit of the model to the observations. 

 

 4.4.2 Assessing the causes of convergence between observed and modelled 

 connectivity matrices 

 The numerical changes in the correlation coefficient with the shifting APTs were not 

due to random effects, with maximum correlations occurring when number of observed 

unknowns approached modelled unknowns, or slightly exceeded them in the case of the 4x4 

spatial scenario. This last result suggests that the model underestimates the contribution of 

Type 3 recruits, or that the correction for Type 2 recruits has been overestimated, which 

could result from a small sample of the posterior probabilities as spatial resolution was 

increased. Other discrepancies between the observations and the model were the poor 

match in the Estremadura region. These discrepancies may arise from limitations of the 

elemental fingerprinting technique and of the model. Elemental fingerprinting requires that 

sufficient chemical variability of the water be present over space, but also that the chemistry 

of the calcified structures in some way reflects the physicochemical properties of the water. 

Controlled laboratory experiments indicate linear relationships between the concentrations 

of several elements in seawater and in calcified structures (mollusc larval shells and 

statoliths (Milton and Chenery 2001, Zacherl et al. 2003), but also interactive effects of 

temperature and salinity (fish otoliths Martin and Thorrold (2005); mollusc larval shells 

Andreia Carvalho and Laura Peteiro, unpublished data) that will influence the multivariate 

distribution of elements in the target structure and may complicate the probabilistic 

assignment of individuals and the interpretation of the patterns. The biophysical model on 

the other hand is constrained by its internal variability and may not be resolving 
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appropriately all details of the oceanography and biology. For instance, although the model 

configuration is designed to solve the continental shelf circulation at the scale of the 

Western Iberian Margin, the inner continental shelf circulation is influenced by local cross-

shelf winds and surface gravity waves (not solved), and is characterized by a logarithmic 

shoreward decrease in current velocity at scales of 1-2 km (Nickols et al. 2012), which likely 

affect the estimates of along-shore transport. Additionally, although we have obtained 

consistent estimates of dispersal across a range of spawning and of larval behaviour 

scenarios (except in the case of unrealistic bottom-dwelling larvae (Mcquaid and Phillips 

2000, Fuchs and DiBacco 2011), we used growth and mortality rates derived from the 

literature (Ruiz et al. 2008, Pettersen et al. 2010) without a formal assessment of the model 

sensitivity to their variability. 

 

4.5 Future directions 

 

 In the present study we obtained high correlations (r= 0.96) between Observed and 

Modeleld connectivity matrices obtained by both approaches at a high spatial resolution (20 

- 40 km), after discarding all recruits that failed to pass a stringent assignment probability 

threshold (APT= 0.95), in spite of other internal sources of error inherent to either 

methodology. Most of these recruits originated from the Arrábida Bay, which is 

distinguished from the other sources by a well-defined elemental signature. An argument 

can be drawn that, if the model describes these larvae with high certainty, it should also be 

well fitted to predict mussel larvae dispersal and trajectories in the remaining central 

Portuguese west coast. We propose that targeting dispersing individuals for which we have 

of high certainty of assignment to a natal population is an effective way of validating 

biophysical models of larval dispersal, allowing stronger inferences on population 

connectivity relevant for the management of marine populations.  Presently, the 

demonstration of the biophysical model accuracy at smaller spatial scales seems to be 

limited by the resolution of the geochemical fingerprinting technique. The approach taken 

here also highlights the potential in using these two techniques in an integrated manner, in 

order to compensate for, and explore, different spatial resolutions and sources of 

uncertainty (Mora and Sale 2002, Thorrold et al. 2002, Levin 2006, Werner et al. 2007, 

Thorrold et al. 2007, Cowen and Sponaugle 2009, Burgess et al. 2014), and opens the door to 

effectively combine the two techniques to investigate the ability of biophysical models per 

se to describe a wider range of biological models, geographical settings and temporal scales.  
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4.7 Supplementary Information 1: Literature review 

 

Analysis 

 The two most common approaches have been to use genetic markers and a 

numerical biophysical model, or the microchemistry of hard parts and a numerical 

biophysical model, but genetic markers and micro-chemistry, and combinations of genetic 

markers or microchemistry with current measurements, have also been employed. Ideally, a 

migration probability matrix could be produced by each methodology, which would allow a 

spatially explicit estimate of intensity of dispersal and connectivity, and a direct numerical 

comparison of dispersal estimates. However, constraints associated with life-cycle traits, 

type of biological material and, presumably, available expertise and funding resulted in a 

variety of dispersal metrics employed by the different studies, which necessarily influenced 

the types of comparisons that could be made between estimates.  

 Genetic techniques most commonly employed estimated distance matrices among 

sampled populations based on a variety of indices (FST, GST, Jost's Dest, Nei's DA) derived from 

microsatellites (Galindo et al. 2006, Baums et al. 2006, Dupont et al. 2007, Jolly et al. 2009, 

Salas et al. 2009, Liu et al. 2010, White, Selkoe et al. 2010, Kool et al. 2010, Kool et al. 2011, 

Alberto et al. 2011, Foster et al. 2012, Berry et al. 2012a, Coscia et al. 2012, Di Franco et al. 

2012, Thomas and Bell 2013, Jolly et al. 2013, Sunday et al. 2014, Davies et al. 2014, Young 

et al. 2015, Thomas et al. 2015, Gormley et al. 2015), COI (Galindo et al. 2010, Crandall et al. 

2012), cytochrome b(Chiswell 2009), the control region (Correia et al. 2012, Ben-Tzvi et al. 

2012), or elongation factor 1 alfa (Galindo et al. 2010), for a total of thirty three studies. Two 

studies calculated a multi-generation migration probability matrix using coalescent analysis 

of gene flow based on microsatellites (Jolly et al. 2009) or on COI (Crandall et al. 2012). Nine 

studies estimated a contemporary migration probability matrix using genetic (Miller et al. 

2005, Bradbury et al. 2008, Alberto et al. 2011, Schunter et al. 2011, Thomas and Bell 2013, 

Simpson et al. 2014, Fraker et al. 2015) or parentage assignment tests (Berumen et al. 2010, 

Nanninga et al. 2015), all based on microsatellites. 

 Studies using the microchemistry of hard parts (elemental fingerprinting) have been 

less commonly applied in conjunction with other approaches, likely because the technique 

can be applied to a much smaller range of organisms (typically fishes and bivalves). We 

identified only four studies that calculated a contemporary migration probability matrix 

(Miller et al. 2005, Liu et al. 2010, Cook et al. 2014, Fraker et al. 2015), all applying 

discriminant function analysis to assign individuals to putative source populations. Four 
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other studies used elemental fingerprinting to clarify similarities among cohorts (Ben-Tzvi et 

al. 2012), classify self-recruits versus dispersers (Berumen et al. 2010) and freshwater 

dispersers versus marine dispersers (Bradbury et al. 2008), or to characterize source 

locations (Correia et al. 2012). 

 Biophysical numerical modelling was the technique most commonly used in tandem 

with a second (or third) approach to investigate connectivity (35 out of the 40 studies). 

Biophysical models coupled a baroclinic hydrodynamic model adjusted to local bathymetry, 

with a biological model describing spawning distribution and larval biology. The 

oceanographic models differed in spatial scale, nesting, grid resolution and forcing. In all 

cases different combinations of spawning periodicity and intensity, growth rate, mortality 

rate, competency period and/or larval behaviour were employed, in an attempt to bracket 

the uncertainty regarding parameterization of these processes. Simulated periods were 

chosen to cover the expected sources of temporal variability, whereas some kind of 

temporal integration was typically applied in order to calculate an average connectivity 

matrix. Twenty one studies estimated dispersal probability matrices (Galindo et al. 2006, 

Baums et al. 2006, Dupont et al. 2007, Piggott et al. 2008, Chiswell 2009, Jolly et al. 2009, 

Salas et al. 2009, Galindo et al. 2010, Alberto et al. 2011, Schunter et al. 2011, Berry et al. 

2012,  Soria et al. 2012, Coscia et al. 2012, Crandall et al. 2012, Di Franco et al. 2012, Thomas 

and Bell 2013, Simpson et al. 2014, Schiavina et al. 2014, Gormley et al. 2015), while 

fourteen studies calculated migration probability matrices(White et al. 2010, Kool et al. 

2010, 2011, Selkoe et al. 2010, Foster et al. 2012, Domingues et al. 2012, Jolly et al. 2013, 

Moksnes et al. 2014, Sunday et al. 2014, Davies et al. 2014, Nanninga et al. 2015, Fraker et 

al. 2015, Young et al. 2015, Thomas et al. 2015).  

 Advancements on the merging of independent approaches to describe dispersal 

patterns have been to use connectivity matrices predicted by biophysical models (either 

dispersal probability matrices or migration probability matrices) into population genetic 

models, in order to predict genetic structure.  If the predicted genetic structure matches the 

observed structure, a case is made that migration mediated by oceanographic patterns of 

propagule transport influences gene flow. Five studies used a derivation of the Bodmer and 

Cavalli-Sforza matrix model of migration (Bodmer and Cavalli-Sforza 1968) to predict 

equilibrium allele frequencies after a variable number of generations, and compared these 

with observations through correlation between distance matrices (Foster et al. 2012, Young 

et al. 2015), comparison between isolation-by-distance and isolation-by-oceanographic 

distance statistics tested separately (White et al. 2010), or qualitatively (Kool et al. 2010, 
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2011). Similar approaches, where modelled pairwise migration probabilities were used to 

inform a population model predicting allele frequencies at equilibrium, were applied by 

another three studies, which used Mantel tests to compare matrices of observed and 

predicted genetic distances (Sunday et al. 2014), sums of squared differences between 

predicted and observed allele frequencies (Galindo et al. 2010), or qualitative assessments 

of fit (Galindo et al. 2006) to compare predicted and observed genetic structure. 
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Supplementary Table 4.1.1 Methodologies employed by studies that used a multiple approach to the estimation of marine larval dispersal and connectivity matrices. 

 

Approaches Study taxa Location Dispersal metrics Uncertainty Type of comparison Reference 

Genetics and 
Model 

Giant kelp, 
Macrocystis 
pyrifera 

Santa Barbara 
Channel, 
California 

Genetic distance matrix; migration 
probability matrix calculated using 
genetic assignment; modeled 
dispersal probability matrix used 
to estimate probability-weighted 
mean transport time 

Not accounted 

Semi-quantitative; comparison of 
the percentage variability 
explained by trends of isolation-
by-distance and isolation-by-
oceanographic distance 

Alberto et al. 
2011 

Genetics and 
Model 

Coral, Acropora 
palmata 

Caribbean 
Genetic distance matrix; modeled 
dispersal probability matrix 

Not accounted Qualitative 
Baums et al. 
2006 

Genetics and 
Model 

Coral reef fish, 
Glaucosoma 
hebraicum 

Western 
Australia 

Genetic distance matrix; modeled 
dispersal probability matrix; 
modeled transport probability 

Not accounted 
Quantitative; Mantel test used to 
compare matrices of observed 
and predicted distances 

Berry et al. 
2012 

Genetics and 
Model 

Coral reef fish, 
Lethrinus 
nebulosus 

Northewestern 
Australia 

Genetic distance matrix; modeled 
dispersal probability matrix 

Not accounted Qualitative 
Berry et al. 
2012a 

Genetics and 
Model 

Common cockle, 
Cerastoderma 
edule 

Southern Irish 
Sea 

Genetic distance matrix; modeled 
dispersal probability matrix;  

Not accounted Qualitative 
Coscia et al. 
2012 

Genetics a and 
Model 

Marine 
gastropods, Nerita 
plicata and Nerita 
albicilla; 
amphidromous 
gastropods 
Neritina canalis 
and Neritina 
dilatatum 

Indo-Pacific 

Coalescent analysis of gene flow 
fed with modeled dispersal 
probability matrix to predict 
observed genetic structure 

Not accounted 

 
 
 
Quantitative; log Bayes factors 
analysis that the predicted 
genetic structure fits the 
observed genetic structure 
 
 
 

Crandall et 
al. 2012 
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Approaches Study taxa Location Dispersal metrics Uncertainty Type of comparison Reference 

Genetics and 
Model 

Corals, Acropora 
hyacinthus and A. 
digitifera 

Greater 
Micronesia 

Genetic distance matrix; modeled 
migration probability matrix 
transformed into oceanographic 
distance 

Not accounted 

Semi-quantitative; comparison of 
the percentage variability 
explained by trends of isolation-
by-distance and isolation-by-
oceanographic distance 

Davies et al. 
2014 

Genetics and 
Model 

White sea bream, 
Diplodus sargus 
sargus 

Apulian coast, 
Adriatic 

Genetic distance matrix; modeled 
dispersal probability matrix 

Not accounted Qualitative 
Di Franco et 
al. 2012 

Genetics and 
Model 

Shore crab, 
Carcinus maenas 

Western 
Iberian 
Peninsula 

Genetic distance matrix; modeled 
migration probability matrix 

Not accounted Qualitative 
Domingues 
et al. 2012 

Genetics e and 
Model 

Gastropod, 
Crepidula 
fornicata 

English 
Channel 

Genetic distance matrix; modeled 
dispersal probability matrix; 
modeled transport probability 
matrix  

Not accounted 
Quantitative; Mantel test used to 
compare observed and predicted 
distance matrices 

Dupont et al. 
2007 

Genetics and 
Model 

Coral, 
Montastraea 
annularis 

Caribbean 

Genetic distance matrix; modeled 
migration probability matrix used 
to project allele frequencies after 
100 generations based on Bodmer 
& Cavalli-Sforza (1968) matrix 
model of migration 

Not accounted 
Quantitative; non-parametric 
correlation between distance 
matrices 

Foster et al. 
2012 

Genetics and 
Model 

Coral, Acropora 
cervicornis 

Caribbean 

Genetic distance matrix from 
previous study; modeled dispersal 
probability matrix fed into a 
population genetic model to 
simulate multi-generations 
genetic distance based on 10 
independent loci 

Not accounted Qualitative 
Galindo et 
al. 2006 

Genetics a, d 
and Model 

Barnacle, Balanus 
glandula 

California 

Observed allele frequencies; 
migration probability matrix used 
to estimate transitions of allele 
frequencies after 200 generations  

Not accounted 
Quantitative; sum of squared 
differences between predicted 
and observed allele frequencies 

Galindo et 
al. 2010 
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Approaches Study taxa Location Dispersal metrics Uncertainty Type of comparison Reference 

Genetics and 
Model 

Horse mussel, 
Modiolus 
modiolus  

Irish Sea 
Genetic distance matrix; modeled 
dispersal probability matrix 

Not accounted Qualitative 
Gormley et 
al. 2015 

Genetics and 
Model 

Polychaete, 
Pectinaria koreni 

English 
Channel, 
British Islands, 
North Sea 

Coalescent analysis of gene flow; 
genetic distance matrix; modeled 
multi-generation dispersal 
probability matrix 

Not accounted Qualitative 
Jolly et al. 
2009 

Genetics e and 
Model 

Polychaete, 
Pectinaria koreni 

Seine Bay 
Genetic distance matrix; modeled 
migration probability matrix 

Not accounted Qualitative 
Jolly et al. 
2013 

Genetics and 
Model 

Model coral 
species 

Caribbean 

Genetic distance matrices from 
previous studies; modeled 
migration probability matrix used 
to project allele frequencies after 
100 generations based on Bodmer 
& Cavalli-Sforza (1968) matrix 
model of migration 

Not accounted Qualitative 
Kool et al. 
2010 

Genetics and 
Model 

Model coral 
species 

Indo-West 
Pacific 

Genetic distance matrices from 
previous studies; modeled 
migration probability matrix used 
to project allele frequencies after 
100 generations based on Bodmer 
& Cavalli-Sforza (1968) matrix 
model of migration 

Not accounted Qualitative 
Kool et al. 
2011 

Genetics and 
Model 

Shore crab, 
Carcinus maenas 

North Sea, 
Kattegat, 
Skagerrak 

 
 
Genetic distance matrices from 
previous studies; modeled 
dispersal single- generation and 
multiple-generation probability 
matrix 
 
 

Not accounted 

 
 
 
Qualitative 
 
 
 

Moksnes et 
al. 2014 
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Approaches Study taxa Location Dispersal metrics Uncertainty Type of comparison Reference 

Genetics and 
Model 

Anemonefish, 
Amphiprion 
bicinctus 

Central Red 
Sea 

Migration probability matrix 
calculated using parentage 
assignment; modeled self-
retention and self-recruitment 

Not accounted Qualitative 
Nanninga et 
al. 2015 

Genetics and 
Model 

Abalone, Haliotis 
coccoradiata  

New South 
Wales, 
Australia 

Genetic distance matrix; modeled 
dispersal probability matrix 

Not accounted Qualitative 
Piggott et al. 
2008 

Genetics and 
Model 

Bicolor 
damselfish, 
Stegastes partitus 

Central 
American Gulf 
coast 

Genetic distance matrix; modeled 
dispersal probability matrix 

Not accounted Qualitative 
Salas et al. 
2009 

Genetics and 
Model 

Mediterranean 
shore crab, 
Carcinus aestuarii 

Adriatic 
Genetic distance matrix and 
Bayesian clustering; modeled 
dispersal probability matrix 

Not accounted Qualitative 
Schiavina et 
al. 2014 

Genetics and 
Model 

Fish, Serranus 
cabrilla 

Mediterranean 

Migration probability matrix 
calculated using genetic 
assignment; modeled dispersal 
probability matrix 

Accounted using a 
posterior probability 
threshold of 0.80 for 
correct assignment to 
parental population 

Quantitative; correlation between 
connectivity matrices 

Schunter et 
al. 2011 

Genetics and 
Model 

Clownfish, 
Amphiprion 
omanensis 

Oman, Arabic 
Sea 

Migration probability matrix 
calculated using genetic 
assignment; modeled dispersal 
probability matrix 

Accounted using a 
posterior probability 
threshold of 0.95 for 
correct assignment to 
parental population 

Qualitative 
Simpson et 
al. 2014 

Genetics and 
Model 

Rock scallop, 
Spondylus calcifer 

Northern Gulf 
of California 

Genetic distance matrix; modeled 
dispersal probability matrix 

Not accounted Qualitative 
Soria et al. 
2012 

Genetics and 
Model 

Bat star, Patiria 
miniata 

Nothwestern 
Pacific 

Genetic distance matrices; 
modeled dispersal probability 
matrix fed into a genetic 
population model to simulate 
multi-generations genetic distance 
based on 50 independent loci  

Not accounted 
Quantitative; Mantel test used to 
compare matrices of observed 
and predicted genetic distances 

Sunday et al. 
2014 
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Approaches Study taxa Location Dispersal metrics Uncertainty Type of comparison Reference 

Genetics and 
Model 

Rock lobster, 
Jasus edwardsii 

Tasmanian Sea 

Migration probability matrix 
calculated using genetic 
assignment; modeled dispersal 
probability matrix 

Not accounted Qualitative 
Thomas & 
Bell 2013 

Genetics and 
Model 

Coral, Acropora 
spicifera 

Houtman 
Abrolhos 
Islands, 
Western 
Australia 

Genetic distance matrix; modeled 
migration probability matrix 
projected forward for 10 
generations used to calculate 
oceanographic distance 

Not accounted 

Semi-quantitative; significance of 
isolation-by-distance and 
isolation-by-oceanographic 
distance tested separately 

Thomas et 
al. 2015 

Genetics and 
Model 

Whelk, Kelletia 
kelleti  

California 

Genetic distance matrix; modeled 
migration probability matrix used 
to project allele frequencies after 
1000 generations based on 
Bodmer & Cavalli-Sforza (1968) 
matrix model of migration and 
used to estimate oceanographic 
distance 

Not accounted 

Semi-quantitative; significance of 
isolation-by-distance and 
isolation-by-oceanographic 
distance tested separately 

White, et al. 
2010 

Genetics and 
Model 

Fish 
Champsocephalus 
gunnari, fish 
Notothenia rossii 

Scotia Sea, 
Antarctic 

Genetic distance matrix; modeled 
migration probability matrix used 
to project allele frequencies after 
a number of generations 
producing a level of genetic 
differentiation identical to the 
observed level, based on a 
modified Bodmer & Cavalli-Sforza 
(1968) matrix model of migration 

Not accounted 
Quantitative; correlation of the 
observed genetic distance with 
predicted genetic distance 

Young et al. 
2015 

Genetics, 
Model and 
Environmental 
variables 

Kelp bass 
Paralabrax 
clathratus, Kellet’s 
whelk Kelletia 
kelletii, California 
spiny lobster  

Southern 
California Bight 

Genetic distance matrix; modeled 
migration probability matrix used 
as a metric of oceanographic 
distance 

Not accounted 

Quantitative; used linear multiple 
regression to predict the effects 
of oceanographic distance and 
other environmental variables on 
genetic distance 

Selkoe et al. 
2010 
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Approaches Study taxa Location Dispersal metrics Uncertainty Type of comparison Reference 

Genetics c, e, f 
and Elemental 
chemistry 

Coral reef fish, 
Neopomacentrus 
mirya and 
Chromis viridis 

Red Sea 

None; study wasn’t directly about 
dispersal but about genetic and/or 
chemical similarity among settling 
cohorts; measures were genetic 
and elemental similarity matrices 

Not accounted Qualitative 
Ben-Tzvi et 
al. 2012 

Genetics and 
Elemental 
chemistry 

Coral reef fish, 
Amphiprion 
percula 

Papua New 
Guinea 

None; individuals classified as self-
recruiters versus dispersers based 
on parentage assignement 

Not accounted 

Qualitative; repeated measures 
MANOVA with individuals 
assigned to groups based on 
parentage  

Berumen et 
al. 2010 

Genetics and 
Elemental 
chemistry 

Rainbow smelt, 
Osmerus mordax 

Newfoundland, 
Canada 

Migration probability matrix 
calculated using genetic 
assignment; elemental signatures 
classified as freshwater, estuarine 
or marine to estimate levels of 
self-recruitment versus straying 
among tributaries  

Not accounted Qualitative 
Bradbury et 
al. 2008 

Genetics c and 
Elemental 
chemistry 

European conger 
eel Conger conger 

North-east 
Atlantic and 
Western 
Mediterranean 

Genetic distance matrix; 
elemental chemistry only used for 
discrimination of core signatures 
among locations 

Not accounted Qualitative 
Correia et al. 
2012 

Genetics, 
Elemental 
chemistry and 
Model 

Yellow perch, 
Perca flavescens 

Lake Erie, USA 

 
Migration probability matrix 
calculated using genetic 
assignment; migration probability 
matrix calculated using and 
elemental assignment; 
hydrodynamic model used to 
reduce uncertainty in the origins 
of larvae used to characterize 
source population signatures  
 
 

Accounted using a 
posterior probability 
threshold of 0.70 for 
correct assignment to 
source population for 
both genetic and 
elemental data 

Qualitative 
Fraker et al. 
2015 
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Approaches Study taxa Location Dispersal metrics Uncertainty Type of comparison Reference 

Genetics and 
Elemental 
chemistry 

Neon damsel, 
Pomacentrus 
coelestis 

Northern West 
Pacific 

Genetic distance matrix; migration 
probability matrix calculated using 
elemental assignment 

Not accounted Qualitative 
Liu et al. 
2010 

Genetics and 
Elemental 
chemistry 

Black rockfish, 
Sebastes 
melanops 

Oregon and 
Washington, 
USA 

Genetic distance matrix; migration 
probability matrix calculated using 
genetic assignment; migration 
probability matrix calculated using 
elemental assignment 

Not accounted Qualitative 
Miller et al. 
2005 

Genetics b and 
Current 
measurements 

Limpet, Cellana 
strigilis 

New Zealand, 
Chatham and 
Sub-Antarctic 
Islands 

Genetic distance matrix; modeled 
dispersal probability matrix used 
to estimate transport times 

Not accounted Qualitative 
Chiswell 
2009 

Elemental 
chemistry and 
Current 
measurements 

Reef fish, 
Hypsypops 
rubicundus 

California 

Migration probability matrix 
calculated using elemental 
assignment; estimated dispersal 
distances 

Not accounted Qualitative 
Cook et al. 
2014 
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4.8 Supplementary Information 2:  Biophysical model 

 

 Mytilus galloprovincialis has a complex life cycle with a planktonic larval stage and 

sessile juvenile and adult phases. M. galloprovincialis can release and fertilize gametes 

during the whole year at intermediate latitudes, but massive spawnings are concentrated 

between early spring and summer, with an additional spawning peak of smaller magnitude 

in autumn (Villalba 1995, Caceres-Martinez and Figueras 1998, Philippart et al. 2012). The 

planktonic larval stage has an estimated duration ranging from 2 to 6 weeks depending 

mostly on temperature and food concentration (Chia et al. 1984, Lutz and Kennish 1992, 

Phillips 2002, Ruiz et al. 2008, Pettersen et al. 2010). Due to limited larval swimming capacity 

(≤ 0.1 cm s-1 for bivalves, Shanks and Brink 2005), it has been traditionally assumed that 

larval dispersal patterns are mostly dependent on pelagic larval duration (PLD), survival and 

hydrographic patterns. However, vertical migrations between layers flowing in opposite 

directions have been reported as a mechanism that enables larvae to regulate along- and 

cross-shore displacements (Metaxas 2001). Larval behaviour is a key component of larval 

dispersal but not completely understood (Bayne 1964). According to some authors mussel 

larvae concentrate at the surface during the first developmental stage (veliger) but tend to 

loose upward swimming velocity as development progress (pediveliger) (Fuchs and DiBacco 

2011)). Light and discontinuities in the water column, like pycnoclines or food patches, are 

commonly suggested as relevant factors altering vertical migration behaviour (Pernet et al. 

2003, Sameoto and Metaxas 2008, Daigle and Metaxas 2011) and, in general, larvae capacity 

for vertical position regulation might be limited to slow current speeds and low turbulence 

(Pernet et al. 2003, Fuchs and DiBacco 2011). 

 Several aspects of the species' reproductive biology were explicitly simulated by the 

Lagrangian component (see below) of the model, including spatial and temporal distribution 

of spawning intensity, larval vertical migration, larval growth rate and mortality. Four 

spawning scenarios (see main text) were simulated, all accounting for differences in mussel 

density along rocky shore habitats of the western Iberian coast (Gomes et al. 2016) but 

differing on spawning periodicity in order to bracket the seasonal variability (Philippart et al. 

2012). Two larval behaviours were also modelled according to available information (see 

main text): passive behaviour (Mcquaid and Phillips 2000) and ontogenetic vertical migration 

(Rilov et al. 2008, Fuchs and DiBacco 2011). An unrealistic third behaviour, where larvae 

were forced to dwell in the bottom layer, was included in order to provide a contrast to the 

other two scenarios. Temperature-dependent planktonic larval duration (PLD) and mortality 
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were modelled pooling information from laboratory studies (Qiu et al. 2002, Sanchez-Lazo 

and Martinez-Pita 2012).  

 

 The oceanographic model 

 The simulations were conducted using a 3-D free-surface, terrain-following primitive 

equation hydrostatic model configurable for fully realistic regional applications, based on the 

Regional Ocean Modelling System (Shchepetkin and McWilliams 2005). The present 

configuration represents an improvement and extension of the configuration used by Peliz 

et al. (2007) and Oliveira et al. (2009) to the Atlantic margin of the Iberian Peninsula, and 

was applied by Domingues et al. (2012) to describe (links between dispersal and supply of 

Carcinus maenas larvae to the Ria de Aveiro, and by Nolasco et al. (2013) to the study of the 

Carcinus maenas larval connectivity along the Western Iberian Margin (WIM hereinafter).  

Three grids were used to resolve the circulation of the WIM (Supplementary Fig. 4.2.1): a 

large domain (LD), a medium domain (MD) and a small domain (SD). The LD, from 12.5° W to 

5.5° W and 34.4° N to 45.5° N, has a grid resolution of 1/27° (ca. 3 km) and 60 vertical levels. 

This domain has been used to study the ocean circulation in the WIM by Nolasco et al. 

(2013), and provides initial and boundary conditions, through offline nesting, to the MD 

domain. The MD has a horizontal resolution of 1/60° (ca. 1,4 km) and 45 vertical levels, 

extending from the Cape St Vincent at 37° N to Cape Finisterre, 43° N, and from 11.5° W to 

the WIM coast at 8.5° W. The MD covers an area of ~670 x 245 km and constitutes the target 

domain used for the dispersal simulations. The SD, with a grid resolution of 1/180° (ca. 450 

m) and 45 levels, was implemented in order to solve the details of the circulation in the main 

region where natal and recruit signatures were collected, including the Cascais and Arrábida 

bays.  The SD domain exchange information with MD through two-way nesting, improving 

the circulation in the target domain MD. Tidal elevation and current ellipses, from TPXO 

global tide model, was applied at the boundaries of the MD (and hence SD) in order to solve 

the tidal dynamics in both domains. The model was run from the 1st of January until the 

30th of July, 2013, with an atmospheric forcing resulting from the outputs from the Weather 

Research and Forecasting model (WRF, (skamarock et al. 2008)), which was run for the same 

period with a 3 km resolution, and applied to LD, MD and SD domains. The inflow of 

freshwater to the ocean, originated from the main rivers of the region, was included in the 

form of realistic river outflow (provided by INAG, Water Institute of Portugal), for all the 

three domains. The outputs of the model, consisting of temperature, salinity, and three-
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dimensional velocity fields, were stored every hour in order to be used for the Lagrangian 

model described below. 

 The performance of the LD concerning the hydrology and current fields was 

evaluated elsewhere(Nolasco, Pires, et al. 2013). In the present study a validation of the 

oceanographic model was obtained by visually comparing (Supplementary Fig. 4.2.2) sea 

surface temperature (SST) fields predicted for the MD, during the period covered by the 

study, with satellite data retrieved from the Advanced Very High Resolution Radiometer 

(made available by the EUMETSAT Ocean and Sea Ice Satellite Application Facility).  The main 

features of the circulation are captured by the model, including upwelled water and 

filaments during the first part of the study and the poleward flow of a warmer water mass 

during an extended period of upwelling relaxation that started at the beginning of July. 
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Supplementary Figure 4.2.1 Map of the region showing the large (LD), medium (MD) and small (SD) 

domains. At the right panel, the MD shows the 50, 100, 500, 1000, 2000 and 5000 m bathymetric 

contours. The locations of rocky shore where emission/recruitment were simulated are represented in 

green/blue for the sampling region, and in grey for the remaining domain. This figure was produced 

using Python V 2.7.2 (www.python.org). 

 

 
 
 
 
 
 
 
 
 
 
 
 

http://www.python.org/
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Supplementary Figure 4.2.2 Satellite (top row) and MD (bottom row) SST for days 13, 25 and 29 of June, 

and 9 and 23 of July, 2013. The colour bar (SST, o C) is the same for all the images. This figure was 

produced using Python V 2.7.2 (www.python.org). 

 

 

 The biological and Lagrangian offline model 

 In order to simulate spawning, behaviour and growth of M. galloprovincialis larvae an 

Individual Based Model (IBM) was coupled to ROMS using ROFF (CARR et al. 2008). ROFF is a 

drifter-tracking code that simulates larval trajectories from stored ROMS velocity and 

hydrological fields. The drifter-tracking code simulates larval trajectories from stored ROMS 

velocity and hydrological fields using a high order predictor corrector scheme to integrate the 

motion equation dX/dt = Uroms(X,t), with X being the position vector (x,y,z), and Uroms being the 

modelled 3D velocity vector over time, given an initial condition X(t0) = X0. The time step used 

in this Lagrangian model, dt, is 300s. Additionally to the advection generated by the model 

http://www.python.org/
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velocities, the particle movements included random velocities in the vertical direction, which 

were used to parameterize unresolved turbulent processes.  

 

 Spawning and settlement were simulated along rocky coasts (Supplementary Fig. 

4.2.1) using a coastal buffer strip of 2 cells for spawning and 3 cells for settlement. Spawning 

was made proportional to the mussel biomass at each segment of the coast (Siregar 2014) and 

to seasonal spawning activity (Philippart et al. 2012). This was accomplished by spawning into 

the model, during predicted high water, a number of virtual larvae proportional to biomass, 

and by varying the frequency of tides when spawning was simulated (from every high water at 

full spawning intensity, through 1 in every 3rd high water at low spawning intensity, to no 

spawning; see main text for spawning scenarios). Passive larvae were advected according to 

the 3D current velocities predicted by the oceanographic model. Vertically migrating larvae 

were forced to change layer instantaneously once the appropriate age was reached, in the 

case of ontogenetic behaviour, and immediately after spawning, in the case of bottom 

dwelling larvae, and advected at the current velocities at the respective level. 

 The proportional effects of temperature on PLD, and of temperature and salinity on 

mortality, based on the time a larva was exposed to a specific temperature in the case of PLD, 

or to a specific combination of temperature and salinity in the case of mortality, were 

estimated by linearly interpolating between the laboratory data for each larval stage. Age and 

the probability of death were assessed at each time step of the Lagrangian model. Larvae were 

killed randomly based on the proportional death rate during that time step. If a larva survived 

physiological stress it would grow from age 0 at spawning to age 1 at veliger and age 2 at 

pediveliger stages; pediveligers lived and remained competent until age 3 and then died. No 

other temporally or spatially distributed source of mortality (e.g. predation) was used because 

of lack of information.  

 Twelve runs of the model were performed, corresponding to four spawning scenarios 

and three larval behaviours. In each run, 184.340 larvae were simulated. 
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4.9 Supplementary Information 3: Matrix correlations 

 

Supplementary Table 4.3.1 Pearson correlation coefficients between observed and modelled 

connectivity matrices for different combinations of larval behaviour, spawning regime, partitioning of 

the core region, and confidence level of the assignment of recruits into source populations. Sections A 

and B refer to the core matrices (without unknown row), sections C, D and E refer to the core matrices 

plus unknown row. A: uncorrected modelled matrix. B and C: modelled matrix corrected for Type 2 

recruits. D: modelled matrix corrected for Type 3 recruits. E: modelled matrix corrected for Type 2 and 

Type 3 recruits. Shading indicates strength of the correlation; bold values indicate the highest 

correlation in each section. Pa= passive larvae. Om= larvae migrating ontogenetically. Bl= larvae dwelling 

in the bottom layer. S1= continuous larval emission during each high tide until July 12. S2= continuous 

larval emission during each high tide until June 30, then larval emission skipping one of every two high 

tides until July 12. S3= continuous larval emission during each high tide until June 30, then larval 

emission skipping two of every three high tides until July 12. S4= Continuous larval emission during each 

high tide until July 1, no more larvae released afterwards. 3x3, 3x4 and 4x4= spatial organization of the 

core region into 3 or 4 origin x destination cells. Better= recruits assigned into an origin when the 

probability of pertaining to that origin is better than that of pertaining to any other origin. %99, %95, 

%90, %75, %50= recruits assigned into an origin when the probability of pertaining to that origin is larger 

than the level indicated. 

 
A) 
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B) 
 

 
 
C) 
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D) 
 

 
 
E) 
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4.10 Supplementary Information 4: Matrix adjustment 

 

 Accounting for uncertainty increases the fit between observed and modelled 

connectivity matrices at higher spatial resolutions. In Supplementary Fig. 4.4.1 A) and B), the 

3x3 spatial grid yields the best adjustment between the observed and modelled matrices. In 

Supplementary Fig. 4.4.1 C) and D), the 4x4 spatial grid yields the best correlations between 

the observed and modelled matrices. Accuracy greatly increases in the Estremadura regions 

for the corrected case. 

 

 
Supplementary Figure 4.4.1 Graphical comparison between Observed and Modelled connectivity 

matrices with two different spatial grid arrangements, for passive behaviour, 90% confidence level and 

four spawning regimes (colours). Data indicates observations. A) 3x3 core connectivity matrices 

uncorrected for Type 2 and/or Type 3 recruits; B) 4x4 core connectivity matrices uncorrected for Type 2 

and/or Type 3 recruits; C) 3x3 core connectivity matrices corrected for Type 2 and Type 3 recruits plus 

unknown row; D) 4x4 core connectivity matrices corrected for Type 2 and Type 3 recruits plus unknown 

row.  
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4.11 Supplementary Information 5: Prediction 1 

 

A)

 
B)

  



  Chapter IV 
 

183 
 

C)

 
D)
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E)

 
F)

 
 

Supplementary Figure 4.5.1 Effect on the matrix correlation coefficient of randomly excluding from the 

observed matrix a number of recruits equal to the number of observed recruits correctly classified as 

unknowns for each confidence level (columns are Assignment Probability Thresholds (APT) of 0.50, 0.75, 

0.90, 0.95 and 0.99), based on 1000 trials for each threshold. Only the cases for continuous larval 

emission during each high tide until July 1 (S4) and passive larvae (Pa) were tested. A) 3x3 spatial 



  Chapter IV 
 

185 
 

arrangement, core connectivity matrices; B) 3x4 spatial arrangement, core connectivity matrices; C) 4x4 

spatial arrangement, core connectivity matrices; D) 3x3 spatial arrangement, connectivity matrices with 

unknown row; E) 3x4 spatial arrangement, connectivity matrices with unknown row; F) 4x4 spatial 

arrangement, connectivity matrices with unknown row. In panels D) - F) the unknown row is composed 

of the recruits that were randomly assigned as unknowns in the case of the observed matrix, and of 

Type 2 and Type 3 recruits in the case of the modelled matrix. 

 

 In each graph, the dashed line indicates the correlation coefficient that was obtained 

by removing those recruits that correctly failed to pass the posterior probability threshold. 

First row of each panel: distribution of correlation coefficients ranked by trial number; the 

number of removed individuals is indicated above each graph. Second row of each panel: the 

same, but correlation coefficients ranked by value; the number of trials with a correlation 

coefficient above that obtained by removing those recruits that correctly failed to pass the 

posterior probability threshold is indicated above each graph. Third row of each panel: 

frequency distribution of the correlation coefficients. Removing the recruits that correctly 

failed to pass the APT resulted in a correlation coefficient significant higher than that obtained 

by a random deletion of recruits, at p< 0.05, 0.01, 0.001 and 0.0001 (*, **, ***, ****, 

respectively). "corr"= correlation coefficient. 
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4.11 Supplementary Information 6: Prediction 2 

 

 

Supplementary Figure 6.1 Relationship between the matrix correlation coefficient and the difference 

between the numbers of observed and modelled recruits classified as unknowns, for three different 

arrangements of the connectivity matrices. The number of observed recruits classified as unknowns 

changes with the threshold level (from left to right, APTs better-than-the-rest, then 0.50, 0.75, 0.90, 

0.95 and 0.99). The number of modelled recruits classified as unknowns depends on the 

misclassification rate of the larvae into their source population (proportion of larvae incorrectly self-

assigned in each region; Type 2 recruits) and on those that originate from outside the core region (Type 

3 recruits). The figure only shows results for passive larvae and the S4 spawning scenario, separately for 

cases where only Type 2, only Type 3, and Type 2 and Type 3 recruits were classified as unknowns, for 

the same biological scenario. 

 

The correlation coefficient (Supplementary Fig. 5.1) peaks at a difference close to zero, for an 

Assignment Probability Threshold (APT) of 0.75, when only Type 2 recruits are classified as 

unknowns, and at a differences between 0 and 20, for APTs of 0.90 and 0.95, when Type 2 and 

Type 3 recruits were classified as unknowns. 
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into current conservation and management tools 
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Abstract 

 

The valuation of nature is an inbuilt component of validating environmental management 

decisions and an important research field for different disciplines related to conservation, 

economy and ethics. Here, biodiversity was valued using an ecological approach based on the 

intrinsic value incorporated in biodiversity per se, regardless of any human association. The 

Marine Biological Valuation protocol was drawn upon the methodology of terrestrial valuation 

maps, to support the European MSFD environmental status assessment (descriptor 1 – 

biodiversity) and national marine spatial planning approaches. To apply the protocol on the 

Portuguese continental shelf we compiled and analyzed national biological databases for a 

wide taxonomic range of ecosystem components (seabirds, demersal fish, cephalopods and 

crustaceans, macrobenthos, marine mammals and sea turtles) and assessed the spatial overlap 

with existing and proposed conservation areas (Natura 2000 network). The resultant maps 

described patterns of biological value consistent with the physical and biological 

oceanographic conditions as well as local hydrodynamics of the Portuguese continental shelf. 

The results of our approach confirm previously identified valuable areas for protection 

(particularly in the northern and central regions), but also highlights the value of currently 

unprotected sites, mainly in the southern region. Biological valuation maps showed to be 

comprehensive tool to compile and spatially analyze biological datasets. By drawing attention 

to subzones of biological importance, it constitutes a valuable instrument in making 

appropriate-scale decisions on the spatial allocation of human activities in the context of the 

Portuguese marine spatial planning, currently facing the pressure and impacts of increased 

maritime exploitation. 

 

Keywords: assessment tool, intrinsic value, biodiversity, ecological criteria, conservation, 

marine spatial planning 
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5.1 Introduction  

 

 Biological diversity is recognised as the foundation of healthy and multifunctional 

ecosystems (Hector and Bagchi 2007 Worm et al. 2006) and its conservation an important aim 

of environmental management (Brooks et al. 2006, Selig et al. 2014). The valuation (or 

“attributing importance/weight”) of nature is an inbuilt component of validating 

environmental management decisions. Although the quantification of the wide-ranging value 

of biodiversity is currently a significant subject of investigation for conservation, economy and 

ethics disciplines, the tools, methodologies and outcomes have yet to reach a consensus 

amongst researchers. In fact, much debate still surrounds the concepts of biological diversity 

and biodiversity itself. The challenge is then to find ways to evaluate the multidimensional 

diversity concepts (including all biotic variation from genes to ecosystems level) in useful and 

operational ways (Purvis and Hector 2000). 

 In its broad sense, biodiversity is valued regarding the views of anthropocentrism or 

ecocentrism, as having a transaction and/or utility value (economic and/or social relation to 

humans) or holding an intrinsic biological value. Valuing nature requires therefore a complex 

combination of distinct value perspectives; economic, socio-cultural and ecological (Laurila-

Pant et al. 2015, Scholte et al. 2015). There is an ongoing debate about the methods to 

perceive and value nature to reflect a realistic and integrative contribution of biodiversity in 

decision making (Chan et al. 2016, Jacobs et al. 2016). 

 Valuing biodiversity and ecosystem services in monetary terms (assigning a metric 

value to ecosystem components and functions which benefit humankind (Costanza et al. 1997) 

is a contemporary trend (Kubiszewski et al. 2017) enshrined into a number of international 

frameworks, such as the European Union 2020 Biodiversity Strategy, the Intergovernmental 

Platform on Biodiversity and Ecosystem Services (IPBES), the Millennium Ecosystem 

Assessment (MA) and in marine policies like the European Marine Strategy Framework 

Directive (MSFD). Even though there are several definitions and classification systems to 

economically value biodiversity in the literature (see de Groot et al. 2002), no unified 

framework has been reached to assess, measure, and integrate marine monetary metrics in 

environmental management (Nahlik et al. 2012). Monetary evidences are believed to be easily 

conveyed to a broad audience and assimilated into conservation policy-making processes 

(Bräuer 2003). Also, economic valuation of nature can be a pragmatic way forward to add to 

scientific and ethic approaches to reach conservation goals; a strategy used in other domains 

like public health, development and education (Scharks and Masuda 2016). Several studies 

have already economically calculated coastal and marine ecosystem services in different 
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settings: in estuarine waters (Barbier et al. 2011), coral reefs (Pendleton 1995), artificial reefs 

(Polak and Shashar 2013), mangrove forests (Huxham et al. 2015), sea grass meadows (Tuya et 

al. 2014), open sea (Ressurreição et al. 2011) and the deep sea (Jobstvogt et al. 2014). 

However, most critics to environmental economic valuation point out the fact that many 

financial proxies cannot reflect the highly complex and dynamic role of biodiversity and 

ecosystem services to human wellbeing (Bartkowski et al. 2015). This is especially true in the 

marine setting, with physical and biological fundamental differences when compared to the 

terrestrial environment (Carr et al. 2003). For instance, the relative "openness" of marine 

populations (i.e. greater magnitudes and higher rates of import and export than their 

terrestrial counterparts) along with the way anthropogenic pressures are more diffuse in the 

highly dynamic tri-dimensional matrix (from the surface to the subsoil), require broader spatial 

and temporal scale approaches to value biodiversity in ecologically meaningful ways. Also, 

several arguments have emerged among conservationists that conventional economic 

approaches are inadequate for conservation issues since they quantify ecosystem services as 

marketable, and consequently, replaceable commodities (Gómez-Baggethun et al. 2010, 

Peterson et al. 2010) contradicting conservation targets (Callicott et al. 2015). Spash (2015) 

argued that this economic logic of natural systems and its offset principle, does not seek to 

prevent or reduce biodiversity devastation, but to legitimize it.  

 A complementary approach values biodiversity through its non-use, intangible socio-

cultural value. It investigates personal attitudes and perceptions regarding ecosystem services 

in non-monetary terms (Daniel et al. 2012, Kenter et al. 2015). These valuation techniques are 

however constrained to landscapes greatly shaped by human direct influence (Martin-López et 

al. 2012) and less competent in offshore marine areas (but see Christie et al. 2017). In the 

marine environment, the quantification of this socio-cultural component has been mainly 

treated within the context of marine protected areas (Angulo-Valdés and Hatcher 2010, 

Petrosillo et al. 2007). 

 Finally, the ecological approach to value of biodiversity is based on the intrinsic value 

of biodiversity per se, regardless of any human association. This notion has been the basis not 

only for environmental ethics but also for biological conservation disciplines. Whether it is 

based on a philosophical view, or supported by available scientific methods or judgment, 

intrinsic values in nature are now widely accepted by conservationists (Cafaro and Primack 

2014, Doak et al. 2014, Vucetich et al. 2015). In order to reduce the subjectivity of “inherent 

values”, various systematic decision supporting tools have been developed, using multiple 

biodiversity metrics and spatial analysis to meet the conservation targets (e.g. Airamé et al. 

2003, Villa et al. 2002). Some studies identify areas of ecological importance, focusing on 
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individual taxa (Fishpool et al. 1998), groups of species (Eken et al. 2004), or habitats (Ward et 

al. 1999), using multiple ecological criteria (Roberts et al. 2003) or highlighting hotspots of 

rare/endemic species or high species richness (Myers et al. 2000). At a global scale, the 

Convention on Biological Diversity (CBD) has adopted a scheme to recognize ‘Ecologically or 

Biologically Significant Marine Areas’ (EBSAs) in need of protection. Seven scientific criteria are 

used to define EBSAs (Dunn et al. 2014):  uniqueness or rarity; special importance for life-

history stages; importance for threatened, endangered or declining species and/or habitats; 

vulnerability, fragility, sensitivity, or slow recovery; biological productivity; biological diversity; 

and naturalness.  

 The Marine Biological Valuation protocol presented here (Derous et al. 2007a, 2007b) 

was drawn upon the methodology of the terrestrial valuation maps, to fulfill the emergent 

need on solid spatial information to support marine spatial planning approaches. The protocol 

developed by Derous (2007c) uses valuation criteria based on a thorough review of academic 

literature and international legislative documents on marine biological assessment by a panel 

of experts from Project BWZee - A Biological Valuation Map for the Belgian Continental Shelf. 

Unlike the EBSA protocol, whose aim was to identify areas in need of protection, including 

criteria related to human impacts, the method reflects on “the inherent value of marine 

biodiversity, without reference to anthropogenic use”. It was initially developed for the Belgian 

part of the North Sea, but has also been applied to the shallow Belgian coastal zone (Vanden 

Eede et al. 2014), UK (Vanden Eede 2007), Azores (Rego 2007), Denmark (Forero 2007) and 

Spain (Pascual et al. 2011). Also, Weslawsli et al (2009) used a modified version of this protocol 

to assess the biological value of the benthic communities in the southern Baltic Sea.  

This protocol was applied in this paper to generate marine biological valuation maps for the 

continental Portuguese shelf, using available biological datasets. These maps can serve as 

integrative baseline information within the European MSFD environmental status assessment 

(descriptor 1 – biodiversity) and to define priority conservation areas in marine spatial 

planning (MSP). 

 Meaningful Initiatives which integrate existing full spatial coverage biological datasets 

are crucial for the monitoring of biodiversity, given the contemporary pressure on marine 

resource exploitation and the competitiveness of the maritime economy (Golden et al. 2017). 

This is particularly true in the Portuguese case, having one of the largest continental shelf 

areas in the European Union and where the National Ocean Strategy 2013-2020 is set on the 

“blue growth” development model, promoting greater efficiency in the use of marine 

resources. The Portuguese MSP plan establishes the legal basis for the national policy on 

marine spatial planning and management, using the “Plano de Ordenamento do Espaço 
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Maritimo POEM 2008-2012” (INAG, 2012) as the national reference situation for coastal and 

ocean planning and private use. However, concerns have arisen that the framework is mainly 

driven by economical concerns, with environmental conservation coming second to economic 

goals (Frazão Santos et al. 2015, 2014). Calado et al. (2010) stated that the major operational 

challenge encountered in developing the Portuguese MSP was the access to suitable quality 

data (and associated metadata) and the lack of implementation tools to facilitate an effective 

public discussion. In this sense, the specific objectives of this work are: (i) to explore, compile 

and summarize national marine biological databases: (ii) to apply the marine biological 

valuation approach on the Portuguese continental shelf waters (iii) to assess the spatial 

overlap of the valuation scores with marine conservation areas (Natura 2000 network) and (iv) 

to examine the significance of our results in the context of the Portuguese marine spatial 

planning.  

 To our knowledge this is the first published attempt to combine and spatially evaluate 

data for a wide taxonomic range of ecosystem components (seabirds, demersal fish, 

cephalopods and crustaceans, macrobenthos, marine mammals and sea turtles) at the scale of 

tens of kilometers along the continental Portuguese shelf. 

 

5.2 Material and Methods 

 

 5.2.1 Study area  

  In this study we used existing georeferenced databases for the distribution and 

abundance of marine organisms in the continental Portuguese shelf waters. The Portuguese 

continental shelf extends from the Galicia Bank to the Gulf of Cadiz for approximately 900 km 

in length, averaging a width of approximately 45 km, and is bordered by an irregular and steep 

shelf-break at around 160 m (Figure 5.1). The shelf is characterized by a variety of sediment 

types (Martins. et al. 2012) and cleaved by three main deep submarine canyons Nazaré, 

Cascais/Lisbon and Setúbal, representing geo-morphological and hydrological margins (Oliveira 

et al. 2007). In the western margin, the shelf northern sector is moderately wide (up to 60 km), 

and receives significant input from rivers, being a high-energy environment exposed to NW 

swells and high biological productivity. Distinctively, the southern sector (about 10 to 20 km 

wide), receives less riverborne input, has a steeper slope and is subjected to a low energy 

regime with swells predominantly from SW-S and SE (Mil-homens et al. 2007). In the southern 

margin the continental shelf is generally narrow and further characterized by relatively shallow 

depths (110 to 150m) of the shelf break. Being situated at the northern limit of the Eastern 

North Atlantic Upwelling Region, the Portuguese continental coast is also strongly influenced 
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by seasonal upwelling events (Relvas et al. 2007): from approximately June to October, the 

upwelling system brings cold and nutrient-rich waters to the surface, while warmer offshore 

waters reach the shelf from November to May.  

 Our study area covered 41866.5 km², representing 13% of the Portuguese economic 

exclusive zone (EEZ, 327 667 km²). Since it covers a large area with great topographic and 

oceanographic variability, it is subdivided for this study into 4 main regions (northern, central, 

southwestern and southern) to assist in describing and interpreting the results). For further 

analysis, each region was divided into grid cells of 9 km x 9 km (see Figure 5.1). These grid cells 

were defined as subzones within the study area which could be scored relative to each other, 

against a set of biological valuation criteria. At first, the subdivision of the study area according 

to a habitat classification was considered, but the highly heterogeneous marine benthic 

substratum type (Martins et al. 2012) hindered to have representative habitat types as 

subzones, at the scale of this study. The applied grid and the size of the subzones (grid cells 

size) was then chosen taking into consideration the total size of the study area, the sampling 

effort of the available data and on the basis of ecologically-meaningful parameters, like the 

mobility and dynamics of the biodiversity component under consideration. Even though 

smaller grid cells would make more sense in the case of relatively immobile benthic organisms 

when compared to highly mobile birds or marine mammals, the considerably lower sampling 

effort subjacent to some datasets led us to the decision of using an equally sized grid cell for all 

components.  
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Figure 5.1 Overview of the study area illustrating the subzones used for biological valuation (grid cells 9 

km x 9 km) around the Portuguese continental shelf waters. The colour scheme represents the region 

limits used to assist in interpreting the results. Bathymetric lines show the 100 m (dark grey), 200 m 

(black) and 1000 m (dashed line) depth contours. Some important topographic features and locations 

cited in the text are also shown.     

 

 5.2.2 Databases  

 This study included data on several marine ecosystem components (macrobenthos, 

birds, demersal fish, cephalopods, crustaceans, marine mammals and sea turtles) for which 

sufficient and adequate spatial distribution data were available for the Portuguese continental 

shelf (Table 5.1).  
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Table 5.1 Sampling period, method, number of records, number of species and selected and ecologically 

significant and habitat forming species per ecosystem component. Total number and percentage of 

subzones with data. Spearman correlation between the biological valuation scores per ecosystem 

component and the total biological valuation score. 

 

Ecosystem 
component 

Sampling 
period 

Sampling 
method 

Nr of 
records 

Nr of 
species 

Ecologically significant 
species 

Habitat 
forming 
species 

Number 
of 
subzones 

with 
data (% 
of total) 

Spear. 
corr. 

         

Macrobentos  

2007 
(Martins 
et al 
2013)   

145 
stations 
(0.1 m2 
Smith–
McIntyre 
grab, 
sieved on 
board over 
1 mm 
mesh size)  

6526 603 

Protodorvillea 
kefersteini,Pisione 
remota,Asbjornsenia 
pygmaea,Magelona 
johnstoni,Urothoe 
pulchella,Fabulina fabula,Abra 
alba,Galathowenia 
oculata,Lumbrinerides 
amoureuxi,Euchone 
rubrocincta,Lysidice 
unicornis,Sternaspis 
scutata,Heteromastus 
filiformis,Psammogammarus 
caecus 

Lanice 
conchilega, 
Sabellaria 
spinulosa    

115 
(21%) 

0.46  

         

Birds 
2004-
2012 
SPEA 

15818 
observatio
ns 
(European 
Seabirds 
at Sea -
ESAS- 
protocols  

15819 67 

Puffinus mauretanicus 
Calonectris diomedea  
Morus bassanus, Larus 
michahellis 

  
534 
(97%) 

0.80  

         

Demersal 
fish, 

cephalopods 
and 

crustaceans 

2008      
IPMA 
(Chaves 
et al 
2008) 

88 stations 
(Bottom 
trawl 
surveys, 
average of 
3.5 knots, 
each haul 
lasting 30 
minutes. 
Mesh size 
of 20 mm  

1494 156 

Abralia (Asteroteuthis) 
veranyi, Alloteuthis, Illex 
coindetii, Loligo vulgaris, 
Sepiolidae,Todaropsis 
eblanae, Engraulis 
encrasicolus, Sardina 
pilchardus 

  86 (16%) 0.25  

         
Marine 

Mammals 
and Sea 
Turtles 

2004-
2012 
SPEA 

581 
observatio
ns (ESAS 
protocol) 

582 16 

Balaenoptera acutorostrata 
Phocoena phocoena, 
Caretta caretta 
 

  
241 
(44%) 

0.38  
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 Given the satisfactory data coverage in the entire study zone, no use was made of full 

coverage spatial distribution predictive models, avoiding interpolation methods whose 

accuracy could not be assessed. Instead, the information for all the ecosystem components 

used in this study consisted of direct observations and the datapoints were plotted on a grid of 

subzones (9 km x 9 k m cell size).  

 We run the analysis on four major components: macrobenthos, birds, demersal fish 

and marine mammals. The demersal fish component included pelagic species, cephalopods 

and crustaceans. Sea turtles were not assessed as a separate component, but included in the 

marine mammals component because of the small size of the reptiles ‘dataset and the fact 

that the underlying observations originated from the same monitoring surveys. Prior to the 

analysis, general data quality control was applied on all databases. Taxonomy was confirmed 

using the World Register of Marine Species Taxon match (WoRMS Editorial Board, 2017) to 

avoid the use of synonymous taxa. Geographical coordinates and dates were standardized for 

all records.  

 For the macrobenthos component, the database covered one sampling year and 

included a total of 145 sites, distributed in perpendicular lines to the coastline, between 13 

and 195 m water depth (Martins et al. 2014, 2013). One sediment sample was collected at 

each site with a 0.1 m2 Smith–McIntyre grab for macrofauna extraction (sieved on board over 

1 mm mesh size) and identified to species level whenever possible, with a total of 26315 

animals sampled and 603 species identified.  

 For the demersal fish component data was used from the 2008 demersal autumn 

research trawl survey carried out by IPMA (Instituto Português do Mar e Atmosfera) as part of 

the National Programme for Biological Sampling (PNAB/EC Data Collection Framework). Survey 

sampling stations were spread along the continental shelf waters, covering depths between 20 

and 500 meters. The bottom trawl (14m headline, ground rope with rollers, 20 mm cod-end 

mesh size) fishing operations were carried out during daylight at an average speed of 3.5 

knots, each haul lasting 30 minutes (Chaves 2008). For this exercise, we used the central point 

of the line survey as a fishing station and the number of individuals per hour of trawl as the 

abundance index. A total of 88 fishing stations were surveyed distributed in 12 sectors at 3 

different depth levels: 20-100 m, 101-200 m and > 200 m, identifying 99 species of fish, 13 of 

cephalopods, 24 species of crustaceans and 43 species of other groups (echinoderms, 

cnidarians, bivalves, gastropods, polychaetes, ascidians and nudibranchs). 

 The birds, marine mammals and sea turtles database was made available by the 

Portuguese Society for the Study of Birds (SPEA). Sea bird, marine mammal and reptiles census 

(2004-2012) followed standard European Seabirds at Sea (ESAS) protocols for data collection 
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(Camphuysen and Garthe, 2004), a standardized ship-based method for recording at-sea 

distribution of seabirds. It consists of observation units of 5 minutes each, during a continuous 

route (linear transects), allowing the calculation of animal density estimates for the prospected 

area (number of animals/ km2).  

 Regarding seabirds, marine mammals and turtles all animals in contact with water 

within 300 m of the survey transect were counted, and birds in flight were assessed using the 

snapshot method. More than 19 000 km² were surveyed, resulting in more than 200 000 bird 

observations (belonging to 61 species), 542 marine mammals’ sightings (11 species recorded) 

and 39 observations of sea turtles (1 species recorded). Based on vessel speed and transect 

width, the surveyed area was calculated and density was estimated as the total number of 

observed animals divided by the area covered. However, concerning the marine mammal 

database, some methodological constraints associated with untrained observers might have 

resulted in species misclassification and in the high proportion of ‘non-identified’ cetacean 

records. Also, during ESA dedicated surveys, only one quadrant within 300 m of the survey 

transect was covered, missing the presence of cetaceans a larger distance from the boat.  

 

 5.2.3 Marine Biological Valuation protocol  

 The protocol employed in this study was thoroughly described by Derous et al. 

(2007c). Within the study area, a set of assessment questions were selected and applied to the 

different subzones, in order to score them relative to each other. Assessment questions 

chosen were:  

Q1: Is the subzone characterized by high counts of many species? 

Q2: Is the abundance of certain species very high in the subzone? 

Q3: Is the presence of rare species very high in the subzone?  

Q4: Is the abundance of rare species very high in the subzone?  

Q5: Is the abundance of ecologically significant species (ESS) high in the subzone?  

Q6: Is the species richness (SR) high in the subzone?  

Q7: Is the abundance of habitat-forming species (HFS) high in the subzone? 

 

Similarly to Vanden Eede et al. (2014) in a study of the Belgian coast, the marine biological 

valuation performed in this study was based on the R-script developed by the Flanders Marine 

Institute (VLIZ), (Deneudt 2013), adapted to the available biological data. The assessment 

questions were based on the criteria of rarity, aggregation and fitness consequences and 

transformed into mathematical algorithms (see Supplementary information table S.1 for full 

description of assessment questions, valuation criteria and algorithm description) and applied 
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to each ecosystem component dataset separately. This resulted in a numerical output further 

scored into a semi-quantitative classification of five classes (1-5). In each subzone, the total 

scores for all assessment questions were added per ecosystem component (each assessment 

question having an equal weight over the total score) resulting in a biological value (BV) score 

per subzone. The ecologically significant species and habitat forming species chosen are listed 

in Table 5.1 and were selected based on expert knowledge and/or based on the DEVOTES 

Keystone Catalogue, which is a review of potential keystone species of the different European 

marine habitats (Smith et al. 2014). The total BV was calculated for each subzone by averaging 

the values of the various ecosystem components (when there was only one ecosystem 

component, the total value assumed its score) and classified into a five value scoring system: 1 

= Very Low, 2 = Low, 3 = Medium, 4 = High, 5 = Very High. These scores were displayed on 

colour graduated BV maps. The correlation between each component and the total BV scores 

was measured by calculating the Spearman correlation.  

 Data availability values were determined by the number of samples (/observations) of 

each component taken (/made) in each subzone. It was calculated for each ecosystem 

component and for all components together, and divided into a three value scoring system: 1 = 

Low, 2 = Medium, 3 = High. The reliability indices scored how many assessment questions were 

answered per subzone, compared to the total number of possible questions. A reliability 

valuation map (scoring 1 = Low, 2 = Medium, 3 = High) was created for each component and 

for all components together. It displays the “trustworthiness” of the data;, and thus the value 

of subzones with less available data for all ecosystem components are scored as being less 

reliable than subzones valued on all the ecosystem components. This information should be 

consulted and discussed together with the BV map for a better interpretation of the overall 

results.  

 

 5.2.4 Hotspot identification  

 The Hotspot spatial statistics analysis (Getis-Ord Gi*) was run in ArcMAP 10.1 to 

spatially cluster subzones with either significant high or low values. This tool identifies 

hotspots by examining each subzone within the context of neighboring elements (Getis and 

Ord, 1992), evaluating the spatial association of a variable within a specified fixed distance 

band of a single point (in this case, the geometric centroid of each grid cell). In this sense, 

isolated large value cells were considered as outliers. We set up the distance threshold so as to 

include three neighbors of a grid cell. The result is a map of standardized z-scores reflecting 

the average BV within the defined radius relative to the whole domain, which can be 

compared to expected values under a normal distribution. Setting a confidence level of 95% 
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delimits areas of spatial significance at z-values +1.96 standard deviations from the mean in 

the case of hotspots, and -1.96 standard deviations from the mean in the case of coldspots.  

 

 5.2.5 Spatial overlap  

 

 5.2.5.1 Conservation areas 

 We investigated the spatial overlap of the total biological value obtained in this study 

with Natura 2000 marine conservation areas. This European network of nature protection is 

composed of sites designated under the Birds Directive (Special Protection Areas, SPAs) and 

the Habitats Directive (Sites of Community Importance, SCIs and Special Areas of Conservation, 

SACs). While SPAs are designated directly by Member States, SCIs are first proposed by 

Member States and, when approved by the European Commission, are designated as SACs. 

Here, we compare our results with the recently expanded marine SPAs and with the formalized 

proposal for the creation and expansion of marine SCIs, which await the approval by 

competent national authorities. Some already designated SCIs cover coastal areas, but are 

essential littoral land sites covering a narrow strip of marine area of up to 20m deep, and will 

not be considered here. For full illustration of Natura 2000 Network SPAs and SCIs in 

continental Portugal see Supplementary information Figure S.1.  

 SPAs place great emphasis on the protection of habitats for endangered and migratory 

species and member states should identify and delimit the areas so as to ensure that all  

‘most suitable territories’ are designated for protection, based on scientific knowledge. In 

Portugal, 7 SPAs which incorporate marine areas comprise 26% of the continental shelf area 

(6188 km²): Ria de Aveiro, Aveiro/Nazaré, Ilhas Berlengas, Cabo Raso, Cabo Espichel, Costa 

Sudoeste and Ria Formosa. These have been created and recently expanded, based on the 

available information of occurrence, distribution and reproduction of numerous seabird 

species. Geographic Information System layers for N2000s were obtained from the 

Portuguese ICNF (Institute for Conservation of Nature and Forest). The spatial overlap analysis 

was performed using the ArcGIS software (ESRI, 2006). The polygons corresponding to N2000 

SPAs were used to quantify the area (in km²) overlapping the different subzone BV scores. 

Finally we overlapped the total BV Hotspots with the current marine SPAs and proposed SCIs. 

We used the SCIs marine polygons included in the technical proposal recently submitted by the 

national nature and biodiversity conservation authority to extend the Habitats Directive to the 

marine environment (Maceda-Praia da Vieira, Costa de Setúbal and Costa Sudoeste). 

 

http://ec.europa.eu/environment/nature/natura2000/sites_birds/index_en.htm
http://ec.europa.eu/environment/nature/natura2000/sites_hab/index_en.htm
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 5.2.5.2 Habitat maps  

 Lastly, we used the EUSeaMap broad-scale seabed habitat maps (available at 

www.emodnet-seabedhabitats.eu, see Fig. 5.7A and Fig. 5.7B) to analyze the association 

between the total valuation outputs with local physical characteristics. EUSeaMap—Mapping 

European seabed habitats (Populus et al. 2017) is a broad-scale modeled habitat map covering 

over 2 million km2 of European seabed (available in a polygon format layer), built in the 

framework of MESH (Mapping European Seabed Habitats). Habitats were classified according 

to EUNIS (European Nature Information System) classification system which provides a 

common and comparable European reference set of habitat types: "rock", "coarse sediment", 

"mixed sediment", "sand", "muddy sand", "sandy mud" and "mud". In addition, we used the 

biological zonation (EUSeaMap) for habitat characterization, based on a vertical zonation 

scheme reflecting changing conditions of light penetration/attenuation and disturbance of the 

seabed by wave action: the infralittoral, the circalittoral, the deep circalittoral and the upper 

slope. The infralittoral zone extends from the intertidal seafloor to a boundary marking the 

end of favorable light conditions for the growth of seagrass and green algae. The circalittoral 

zone extends to a maximum depth at which the seabed is influenced by waves (where depth is 

≤ ½ wavelength) and the deep infralittoral and upper slope expand to a maximum depth of 200 

m and 750 m respectively. Independent one-way ANOVAs, followed by post-hoc Tukey tests, 

were performed to test any effect of each factor (substrate type and biological zone) on total 

BV. 

 

5.3 Results 

 

 5.3.1 Biological Value (BV) and Hotspots classification  

 The BV maps for each assessment question, data availability and reliability indices per 

ecosystem components can be seen in Supplementary information Figures S.2-S.5. When 

looking at total data distribution (all components together), there were 546 subzones with 

data (covering an area of 41866.5 km²). The bird component contributed with the highest 

amount of data for the total valuation, followed by the marine mammals and turtles, 

macrobenthos and finally  the demersal fish component (with 534, 241, 115 and 86 subzones 

with data, respectively, Table 5.1). The great majority of the data (70%) was concentrated 

within continental shelf waters up to 200 m. Total BV maps and hotspot analysis per 

ecosystem component are illustrated in Fig. 5.2. 

 The valuation map for the bird component (Fig. 5.2A) clearly shows the high 

ornithological BV of the entire Portuguese coastal zone. High and very high values were 

http://www.emodnet-seabedhabitats.eu/
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distributed along the coast, mainly at less than 100 m depth in the north and center and up to 

200 m depth in the south. In contrast, the southwest coast is characterized by very low to 

medium values up to the region around Cabo São Vicente, where high values appear again. 

The hotspot map for the bird BV scores (Fig. 5.2E) visibly shows this discontinuity of higher 

values along the southwest coast.  

 For the demersal fish component, high and very high BV were located mostly outside 

Aveiro estuary, around the isolines for 100-200m water depth, and in the southwest at deeper 

depths of around 300 m. However, most of the high and very high BV was concentrated in the 

south region between 100-200 m (Fig. 5.2B and Fig. 5.2F). Sampling effort in 2008 was 

identical for the entire study area, and data availability depended on the location of the 88 

trawled stations. 

 For the macrobenthos, sampling stations were evenly distributed along the west coast 

of Portugal but placed in closer proximity in the south coast. The valuation and hotspot map 

show a distribution of higher valuable areas off Aveiro, Cabo Carvoeiro, south from Setubal bay 

and in the south region (Fig. 5.2C and Fig. 5.2G respectively). 

 The marine mammals ‘component only showed very high BV in the southern region, at 

a depth of 100-200 m, around São Vicente cape in the west, and near the Spanish border in the 

east (Fig.5.2D and Fig. 5.2H). High valuable areas were located in the north, around Aveiro 

region within less than 100m depth and along the continental slope. Other high valuable areas 

for this component were present at a shallower depth around Cabo Raso and dispersed 

around the southwestern and southern region at the continental edge. 
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Figure 5.2 Biological valuation maps for each ecosystem component: A birds, B demersal fish, C 

macrobenthos, D marine mammals and turtles (with common legend) scored into a five value scoring 

system: 1 = Very Low, 2 = Low, 3 = Medium, 4 = High, 5 = Very High. Hotspot classification for each 

ecosystem component: E birds, F demersal fish, G macrobenthos, H marine mammals and turtles (with 

common legend) showing z-scores using 95% confidence levels to determine the areas of spatial 

significance. 

 

 The map of total data availability (Fig. 5.3A), which measures the number of 

observations/samples in each subzone, shows a quite homogeneous distribution in the study 

area, with the great majority (96%) of the grid cells containing the same magnitude of available 

data. Even though data reliability per ecosystem component was very high for the great 

majority of subzones with data (Supplementary information, Figures S.2-S.5), the different 

coverage and sampling effort of the datasets caused the reliability (proportion of assessment 

questions that could be answered by subzone) of the total BV (Fig. 5.3B) to oscillate between 

low (%48), medium (%37) and high (%15). The Total BV map for the whole study area is shown 

in Fig. 5.3C. Very low, low, medium, high and very high value areas covered 36%, 35%, 18%, 

http://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/what-is-a-z-score-what-is-a-p-value.htm
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10% and 1% of the study area respectively. Notably, most of the higher BV scores were 

consistently located near the coastal zone, in shallower areas. In fact, low and very low values 

cover 90% of the total study area comprised zones of higher bathymetry (> 100 m). When we 

look at the results within less than 100m depth, high and very high BV cover almost 25% of the 

area, dispersed along the coast, with predominance in the north, center and south regions.  

 The hotspot analysis for the total BV identified four main hotspot zones of significantly 

high biological value inside the continental shelf waters; off Aveiro and expanding to the north, 

off Cabo Carvoeiro, the region off Cabo Raso and Setúbal bay up to Arrábida bay, and covering 

the majority of the south region (Fig. 5.3D). 

 

 
 

Figure 5.3 A Total data availability scores (1 = Low, 2 = Medium, 3 = High), B Total data reliability scores 

(1 = Low, 2 = Medium, 3 = High), C Total biological value (1 = Very Low, 2 = Low, 3 = Medium, 4 = High, 5 

= Very High). D Hotspot classification showing z-scores using 95% confidence levels to determine areas 

of spatial significance. 

http://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/what-is-a-z-score-what-is-a-p-value.htm
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 When matching up the reliability indices with the total BV, we found that 70% of the 

lowest BV, 22% of the high and 38% of the highest total BV have low reliability (Fig. 5.4). This is 

caused when the scored subzones comprise information from only one component (out of 4). 

However, it is important to notice that reliability was higher in coastal areas; in areas shallower 

than 100 m depth, medium and high reliability scores covered 43% and 33% of the area 

respectively. 

 

Figure 5.4 Reliability of the total BV scores. 

 

 Spearman coefficient of determination (r²) demonstrated the magnitude of the 

association between individual components BV and the total BV. As expected, each 

component’s score was significantly positively correlated with the total score. The bird 

component, which delivered the highest amount of data for the analysis, explained most of the 

trends detected in the total BV scores contributing to 64% of the variation in the total scores, 

followed by macrobenthos (21%), mammals (15%) and fish (5%) (Table 5.1). 

 

 5.3.2 Spatial Overlaps 

 

 5.3.2.1 – Conservation areas 

  Marine SPAs in mainland Portuguese continental waters are illustrated in Fig. 5.5A.  

The spatial overlap of the total BV with the marine fraction of the SPAs can be seen in Fig. 

5.5B. 3% of the total area of very low, 16% of the low, 29% of the medium, 28% of the high and 

20% of very high total BV are contained inside currently designated SPAs. Concerning 

individual SPAs, the percentage coverage of total BV can be seen in Fig. 5.6. Very high BV areas 

were only included in Costa Sudoeste, Cabo Raso and Ilhas Berlengas and with very low 

percentage (3-5% Fig. 5.6). Ria de Aveiro was the SPA with the largest percentage of high BV 

areas included (52%) followed by Cabo Raso, Ilhas Berlengas, Costa Sudoeste, Aveiro/Nazaré 
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and Ría Formosa (25, 18, 18, 16 and 15 % respectively, Fig. 5.6). Cabo Espichel included only 

low and medium values (18 and 82% respectively), and in all the SPAs but Cabo Espichel and 

Aveiro low and very low values make up more than 40% of the area protected (40-60%, 

Fig.5.6).  Fig. 5.5C shows the spatial overlap of the hotspot analysis for the total BV and the 

SPAs and proposed SCIs. It shows that the two BV hotspot areas located in the central region 

are totally included inside the Ilhas Berlengas and Cabo Raso SPAs. The hotspot around Aveiro 

expands much further beyond the Ria de Aveiro and Aveiro/Nazaré SPA, being overlapped with 

the northern part of the proposed Maceda-Praia da Vieira SCI.  The hotspot located in the 

southern region is outside any designated SPA with very limited overlap with Costa Sudoeste 

SPA around Cabo São Vicente. Yet, the proposed SCI of Costa Sudoeste does cover an 

important area of the west side of the southerly BV hotspot but the easternmost part falls 

outside any designated or proposed conservation area. 

 

 

Figure 5.5 A Marine Special Protected Areas (SPAs): Ria de Aveiro, Aveiro-Nazaré, Ilhas Berlengas, Cabo  

Raso, Cabo Espichel, Costa Sudoeste and Ria Formosa. B Spatial overlap of the total BV with SPAs. C 

Spatial overlap of the total BV hotspot analysis with SPAs and recently proposed marine Sites of 

Community Importance (SCIs, from north to south: Maceda-Praia da Vieira, Costa de Setúbal and Costa 

Sudoeste). 
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Figure 5.6 Stacked graph illustrating the total biological value within Portuguese continental marine 

Special Protected Areas (SPAs). 

 

 5.3.2.2–Habitat maps 

 The EUSeaMap broad-scale seabed substrate map (Fig. 5.7A) and biological zone (Fig. 

5.7B) were selected for this analysis. The spatial overlap of the total BV and substrate map 

resulted in each subzone being defined by a predominant substrate type and biological zone 

(in terms of total grid cell area). The substrate type was responsible for significant differences 

in the total BV (F = 3.104, p<0.0001, Fig. 5.8), with a gradient on BV values from coarser to fine 

sediments. Regarding the biological zone, we analyzed both individual components and the 

total BV (Fig. 5.9). For the total BV, higher scores were found in the infralittoral and 

circalittoral, when compared to deep circalittoral and upper slope (F = 25.180, p<0.0001). This 

trend was observed in all components, with some deviations, although significant differences 

were only found in the birds BV (F = 28.214, p<0.001) and macrobenthos BV (F = 3.193, 

p<0.05).  
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Figure 5.7 EUSeaMap broad-scale seabed habitat maps for the Portuguese continental shelf waters: A) 

Substrate type layer and B) Biological zone layer.  

 

Figure 5.8 Mean total BV per substrate type. Bars represent means ±0.95 Confidence interval. Letters 

above bars indicate homologous groups after a Tukey HSD test (p < 0.05). 
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Figure 5.9 Mean total BV per biological zone. Bars represent means ±0.95 Confidence interval. Letters 

above Total BV bar indicate homologous groups after a Tukey HSD test (p < 0.05).                                         

 

5.4 Discussion 

 

 The biological valuation presented here described patterns of biological value 

consistent with the physical and biological oceanography and local hydrodynamics of the 

continental Portuguese coast. This study not only confirms and matches previously identified 

valuable areas for protection (especially in the northern and central regions, around Aveiro, 

Cabo Carvoeiro, and Cabo Raso), but also highlights the value of currently unprotected sites, 

mainly north of Aveiro and in the southern region.  

 

 5.4.1 BV per ecosystem component  

 The bird component BV hotspot map showed significantly valuable areas in the 

southern region and along the western coast, mostly in the widest parts of the continental 

shelf (situated in the northern and central sector). This area is strongly influenced by seasonal 

upwelling patterns and high productive waters, determined by the bathymetry, coastal 

morphology, and local wind conditions (Relvas et al. 2007). In Portugal, marine important bird 

areas (IBAs) have been defined based on seaward extensions of breeding colonies, non-

breeding coastal concentrations and migration bottlenecks (Ramirez et al. 2008). The IBAs 



Chapter V 

210 
 

results, which also highlight the importance of the northern and central coast (Ria de Aveiro, 

Aveiro/Nazaré, Berlengas, Cabo Raso and Cabo Espichel), has been the basis to the creation 

and extension of current SPAs. Recently, Araújo et al. (2017) underlined the importance of the 

northern and central sectors of Portuguese shelf to the critically endangered Balearic 

shearwater Puffinus mauretanicus, which was chosen in our analysis as an ecologically 

significant species. Our analysis further demonstrated the importance of the southern region 

for the birds BV, particularly in the widest portion of the shelf, situated between Cabo 

SãoVicente and Faro. 

 For the macrobenthos component, BV scores showed a heterogeneous gradient along 

the shelf, with high BV areas found off the Aveiro, around Cabo Carvoeiro, south from Setubal 

bay and in the south region, with a hotspot around the Cabo Carvoeiro and Berlengas area, 

and in the southern region. An analysis of the diversity and spatial distribution patterns of the 

soft-bottom macrofauna communities on the Portuguese continental shelf using the same 

macrobenthos dataset also exposed these locations as having high macrofauna abundance, 

high alpha and Shannon–Wiener diversity and high Pielou evenness indices (Martins et al. 

2013). The authors identified depth range, hydrodynamic regime, sediment grain-size and total 

organic matter content as the variables which best related to the macrofauna distribution 

patterns. 

 Highest BV for the demersal fish component were found in the water depths of around 

100-200 m in the north shelf, in the southwest at depths of around 300 m and in the south 

between 100-200 m. Differences in groundfish species assemblages have been observed in 

other studies, showing a north–south biological discontinuity related to shelf bathymetry, 

coastal morphology and oceanography along the northern and southern parts of the shelf 

(Gomes et al. 2001, Sousa et al. 2005). Similar to Sousa et al. (2006), based on an analysis of a 

ten year groundfish survey on the Portuguese shelf and upper slope, we found lower species 

richness to the north and higher to the south (see Supplementary information Figure S.3 –F). 

However, similar to the macrobenthos BV results, there was generally high variability and 

patchy distribution in demersal fish BV scores along the study area. This is probably the result 

of two main factors. Firstly, the complex topography of the continental shelf and the 

heterogeneous distribution of substrate types (Martins. et al. 2012), which is known to 

influence the structure and diversity of benthic species assemblages. Sediment grain size is 

mostly related to differences in the continental shelf morphology and hydrodynamic features, 

the location and extent of rivers, leading to variation and patchiness in the benthic community. 

Secondly, there was a clear limitation in the spatial and temporal resolution of the available 

macrobenthos and demersal fish database. Although survey sampling had a reasonable 



  Chapter V 
 

211 
 

coverage along the whole study area, single-year databases do not reflect inter-annual and 

seasonal changes and thus too short to draw safe conclusions about biological value patterns. 

For this reason, it is possible that some BV scores may be an artifact due to insufficient 

sampling in the area and it will take greater sampling intensity, both temporally and spatially, 

to detect more consistent trends in species distributions, and therefore also in the identified 

local biological value.  

 The marine mammals’ component which also included a limited number of the sea 

turtles observations only showed very high BV in the southern region, at a depth of 100-200 m, 

around São Vicente cape in the west, and near the Spanish border in the east. Some high 

valuable areas were located off Aveiro. Other high valuable areas were situated at a shallower 

depth around Cabo Raso and patchily scattered around the southwestern and southern region 

at the continental edge.  

 Although several institutions are currently monitoring the marine mammal population 

along the coastal and oceanic waters, there is limited information on the overall distribution 

along the mainland Portuguese shelf waters as most studies focus on localized surveys on 

species occurrence, distribution and interaction with fisheries (Brito Cristina et al. 2009, 

Martinho et al. 2015). In these studies, the distribution of dolphinids along the Portuguese 

central west coast was mainly linked with topographic features such as sheltered bays, 

submarine canyons and major estuaries, which drive highly productive surface water and input 

of nutrients. The southern region, which also showed the highest marine mammal’s BV values 

in our study, has already been recognized important for cetaceans (Castro et al. 2013) and 

specifically for the presence of baleen whales (Laborde et al. 2015). 

 Ongoing studies, such as the annual aerial campaigns developed within the Life+ 

MARPRO project (LIFE09 NAT/PT/000038) constitute the first standardized dedicated effort to 

assess large scale marine mammal abundance and distribution for the entire Portuguese 

Exclusive Economic Zone. These efforts greatly improve the quantity and quality of sighting 

records, overcoming the methodological constrain described for the marine mammal database 

used here. Also, it allows for the evaluation and monitoring of the abundance, occurrence and 

health of marine mammal’s populations, to update current national databases and policies and 

to revise the protocol applied here.  
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 5.4.2 Total BV and biodiversity hotspots  

 The total BV results showed higher scores consistently located near the coastal zone. 

Regarding data availability, and despite the study area showing relatively low availability, the 

map showed a quite homogeneous distribution of scores, with higher data availability 

scattered in some coastal grid cells in the northern and central regions. This means that most 

grid cell scores were based on low number of samples/observations for each ecosystem 

component, highlighting the need to increase sampling coverage during national monitoring 

surveys. Data reliability showed lower scores mainly outside the 200 m bathymetric zone in 

the western coast and higher values at the coastal fringe and most of the south region up to 

200 m. High reliability scores indicate high number of ecosystem components in each grid cell 

analyzed and reduces subjectivity of the total result. Off the 200 m depth limit, the valuation 

was less reliable, as the bird component dominated the data both spatially and temporally, 

and the BV of birds alone mostly explained the observed trends of the total BV. High and very 

high BV and medium to high reliability characterized the coastal area up to 100 m depth. Very 

high and high BV appeared mostly in the northern, center and southern regions.  

 The hotspot analysis identified four main areas: stretching to the north and south off 

Aveiro, near Cabo Carvoeiro, south of Cabo Raso, and covering the majority of the southern 

region. While there are regional and national studies confirming the importance of these areas 

for individual ecosystem components as aforementioned, there are no published evidences at 

national scale on marine biodiversity patterns using a wide range of taxonomic groups. The 

hotspot approach used here does not discard other areas in need of protection, but it may 

help in setting priorities to define crucial areas in conservation strategies for diverse global 

biota (Myers et al. 2000). 

 The hotspots areas identified in this study seem to be related with large-scale 

topographic and oceanographic characteristics combined with mesoscale features, which 

influence biodiversity and affect the dynamics of the whole ecosystem. The heterogeneous 

coastline orientation, prominent capes, submarine canyons, large estuaries and river 

discharges, interacting with mesoscale features, such as fronts, buoyant plumes, eddies, 

stratification and wind-induced upwelling areas, result in complex water circulation and 

seasonal high productivity (see Relvas et al. 2007 for a review on the physical oceanography of 

the western Iberia ecosystem). In the west coast, these features are particularly important in 

the northern and central zone, where the northerly winds are more stable and the wide and 

lower shelf results in a more persistent and homogeneous upwelling. This fact might explain 

the higher BV in the northern and central area, when compared with the southwestern sector. 
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A positive BV gradient was found from muddy to rocky substrates, showing substrate type as 

an important factor for the BV distribution. Habitat complexity and sediment types have been 

referred as physical surrogates for biodiversity patterns (Smith et al. 2009). We also detected 

higher BV found in the infra and circalittoral biological zones, reflecting a depth gradient in the 

BV over the study area. The coastal areas were associated with the highest BV, similar to 

previous studies applying the same protocol (Derous et al. 2007c, Pascual et al. 2011, Vanden 

Eede et al. 2014). 

 

 5.4.3 Limitations and opportunities 

 Total data availability was estimated as low in most of the study area, meaning a 

limited number of observations/samples per grid cell. This constraint was particularly 

restrictive for the relatively immobile macrobenthos component, as the entire grid cell was 

characterized by a single 0.1 m² grab sample. Although the grid cell size might represent a 

good compromise for mobile components, that is not the case for less mobile and sessile 

benthic fauna. The use of smaller grid cells for such components would be more 

representative of the associated habitat and together with greater spatial sampling efforts, 

would stand for more realistic BV of the benthic communities, and consequently total BV 

patterns. 

 The temporal scale limitation, as mentioned earlier for the macrobenthos and 

demersal fish component, is also of great importance, since one year databases can not reflect 

the inter-annual and seasonal differences which characterize biological systems, particularly in 

upwelling areas. So, it is important to recognize that we have applied this protocol given the 

accessible national biological datasets with sufficient spatial coverage and sampling effort at 

the time of this study and our analysis should be revised and updated as new relevant data 

becomes available.  

 The addition of spatial data on the distribution and abundance of other important 

marine ecosystem components, such as pelagic fish, phytoplankton and zooplankton will be 

crucial to uncover key patterns in the water column and the surface waters. Qualitative and 

quantitative studies of the phytoplankton distribution and abundance on the Portuguese 

continental shelf revealed strong seasonal variability at regional and local scales, mainly 

related to water column stratification, nutrient availability and intensity and persistence of 

upwelling conditions (Moita 2007).  

 Also, given the size of the subzones and nature of the databases, our results fail to 

provide a complete analysis of the important biological communities at the intertidal and 

shallow subtidal coastal zones, composed of valuable habitat-forming and engineering species. 
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For this reason, it would be important to repeat this exercise at a smaller spatial scale, 

including different habitats, such as transitional waters, seagrass and kelp beds, saltmarshes, 

rocky and sandy shores to improve the valuation at the coastal area and capture the structure 

and function of littoral ecosystems. While most data were simply not available, other could not 

be used due to insufficient spatial coverage and/or lack of abundance information, which could 

create bias in the total BV calculation, underestimating BV due to lack of information. 

 On the other hand, the flexibility and easy adjustments to the protocol permitted the 

remodeling of algorithms to include local knowledge on ecosystem components, as well as 

spatial comparisons with other available environmental databases. Moreover, the set of 

assessment questions can be adapted to different processes and organizational levels of 

biodiversity as proposals for new valuation criteria emerge. This way, the method allows for 

future refinement in the choice of biological-based metrics to define the different facets and 

dimensions of biological systems, such as the ones recently appointed in the Essential 

Biodiversity Variables (EBVs) framework: genetic composition, species populations, species 

traits, community composition, ecosystem structure and ecosystem function (Pereira et al. 

2013). 

 

 5.4.4 Overlap with conservation Areas 

 This study shows that there is a good agreement between the spatial coverage of high 

BV and hotspots with the continental Portuguese SPAs. Also, it shows that the proposed SCIs 

can complement the protection status of valuable areas. Even though the SPAs have been 

designated to safeguard the habitats of migratory and threatened birds under the Birds 

Directive, it is relevant to compare its location with our integrative biological hotspots. Being 

important top predators, seabirds have been described as good indicators of the health of the 

marine environment, as they travel or forage in productive marine hotspots (Parsons et al. 

2008). This way, at-sea distributions of seabirds can act as effective proxies for identifying 

priority sites for conservation of data-deficient marine species (Harris et al. 2007, Hooker and 

Gerber 2004). This is significant since the SPAs management plans should not only guarantee 

the conservation of the habitats and species for which they were designated but also manage 

activities to be developed within its boundaries, requiring a favorable opinion of the national 

environmental management authority, and potential impact assessment (Decree-Law 140/99). 

Almost half of the total area containing high and very high BV fell inside currently designated 

SPAs. Also, the biodiversity hotspots around Cabo Carvoeiro and Cabo Raso were included 

inside the Ilhas Berlengas and Cabo Raso SPAs, respectively. The Aveiro BV hotspot is partially 

integrated in the northern SPA, but is fully included in the northern part of the proposed SCI of 
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Maceda-Praia da Vieira. The main spatial disagreement was observed in the southern region, 

which showed very high BV scores for all ecosystem components separately and for total BV, 

but is currently under little protection status. At present, the only designated protected area in 

the south region is the area surrounding the Cabo São Vicente and the Ria Formosa SPA and 

Natural Park comprising an inter-tidal meadow lagoon, with very limited coverage of coastal 

and deeper habitats. The proposed SCI of Costa Sudoeste covers an important area at the 

westernmost side of the southern hotspot, leaving the east side under no current or proposed 

conservation status.  

 In this way, our study supports the location of existing SPAs and proposed SCIs as 

important sites for the conservation of valuable areas and suggests the need to extend the 

protection along the southern region. Furthermore, management plans should establish 

structured and evidence-based instruments to guide managers and assessing authorities to 

make sound decisions in accordance with the ecological needs and conservation of vulnerable 

habitat types and the species.  

 

 5.4.5 Management Implications  

 Identifying world-wide patterns and trends in marine biodiversity using several 

ecosystem components is important for conservation biology (Tittensor et al. 2010), assisting 

the spatial priority setting for biodiversity sustainability and the challenges posed by 

ecosystem-based MSP processes (Gilliland et al. 2008). 

 At the European level, the MSFD directive refers to biodiversity as a key indicator to 

achieve “Good Environmental Status”, by stating “the quality and occurrence of habitats and 

the distribution and abundance of species should be in line with prevailing physiographic, 

geographic and climatic conditions”. Recently, Portugal has been used as a case study using 

the Nested Environmental status Assessment Tool (NEAT), a large scale marine biodiversity 

assessment under the MSFD. The study used national data on several ecosystem components 

and the overall results exposed Portugal with a “Moderate” environmental status (on a scale 

of 5, from Poor to High) (Uusitalo et al. 2016). Importantly, it also adverted for major 

knowledge gaps in species distribution and areal coverage.  

 At the national level, Portugal has already developed an initial assessment of the 

current environmental status of national marine waters with a comprehensive biological 

characterization of marine waters under the national jurisdiction (MAMAOT 2012). It was 

based on the marine biological valuation protocol and covered broad evaluation areas up to 

200 nm using data on phytoplankton, zooplankton, macrobenthos, bivalves, cephalopods, 

crustaceans, fish, birds and mammals. Although this assessment initiative analyzed each 
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component separately, it did not generate a total BV map across components. This report 

concluded on a “good environmental status” for the major habitats (coastal and pelagic) and 

for the majority of the functional groups analyzed. 

 Even though these general studies are crucial to attend to international policy 

demands, the scanty spatial resolutions of the results are a major limiting factor when dealing 

with the imminent pressure and impacts of local maritime exploitation. The rise of the blue 

growth economy is rushing countries to make smaller scale decisions on the spatial allocation 

of maritime human activities. In this regard, the marine biological valuation tool presented 

here represents a clear advantage in relation with the MSFD approaches in terms of spatial 

resolution of the environmental metrics. Instead of providing a single “status” for major 

habitats, ecosystems components and biodiversity, it provides a multi-metric ecological 

indicator, with a relative scoring system of intrinsic biological value over small scale subzones 

over the entire study area. 

 In Portugal, the legally binding MSP is responsible for dealing with the growing and 

competing demands for maritime space, such as oil and gas exploration, fisheries, seabed 

mining, maritime shipping, aquaculture, coastal and maritime tourism, marine biotechnology, 

ocean energy and environmental protection. A recent study by Fernandes et al. (2017) showed 

that the continental Portuguese coastal space is experiencing high cumulative impacts caused 

by current activities and uses, and alerted for the need to improve environmental assessment 

tools. Interestingly, all the hotspots for the total BV detected in our study coincide with areas 

where anthropogenic impacts (mainly fisheries and pollution) were also greater. The authors 

also alerted for the fact that nature conservation areas considered in the ongoing MSP plan 

(INAG 2012) were still prone to exploration, such as fishing, aquaculture, oil, wave and 

offshore wind inspection or sand and gravel extraction. The environmental section of the plan 

further states that “the information currently available to assess marine ecosystems and 

biodiversity as well as the cultural values associated with the sea is scarce and fragmented”. 

Knowledge gaps are identified as one of the main obstacles to the implementation of the 

operational aspects of the program. Consequently, if marine policies are not built upon 

scientifically-recognized ecological principles on the processes and functioning of biological 

communities, the ecosystem based approach underlying MSP policies might be compromised. 

In this sense, biological valuation maps can highlight valuable areas useful within the scope of 

MSP. Also, it allows for the integration of biodiversity with socio-economic and best expert 

judgment criteria to assist in space-use conflicts in an appropriate spatial scale.  

 This study has proved useful to outline the importance of not only good sampling 

strategies along coastal and continental shelves, but also the significance of offering scientists 
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the opportunity to access and link scattered data for informative biological valuations, 

essential to assist science reproducibility and to minimize biases in policy development. In this 

sense, we advocate for the need to have environmental researchers, computer scientists and 

policy makers working together on the creation and maintenance of a national marine 

biodiversity database. Centralized and up-to-date information on the distribution and 

abundance of marine organisms and habitats is crucial to uncover processes driving 

biodiversity and to assess biodiversity trends against environmental variability. Finally, this 

approach should stimulate discussion among Portuguese scientists, stakeholders and 

managers involved in the Natura 2000 network, MSFD and MSP process on value-based 

criteria to define areas of biological importance to safeguard environmental sustainability in 

“an ocean of opportunities “. 

 

5.5 Conclusions 

 

 The application of the marine biological valuation and hotspot analysis to the 

Portuguese continental shelf waters resulted in the recognition of four major biologically 

valuable regions, despite temporal and spatial data limitation. These areas matched 

topographic and physical oceanographic attributes known to influence biodiversity, such as 

coastline orientation, prominent capes, submarine canyons, large estuaries, habitat type and 

wind-induced upwelling areas. The hotspots fall within the boundaries of Natura 2000 

designated SPAs and proposed SCIs, except in the easternmost part of the southern hotspot. 

Quantitative-based approaches such as the one presented here may assist in guiding 

management plans and decisions to safeguard local biological value and defining priority areas 

for conservation at the scale of tens of kilometers, useful within the scope of MSP. 
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5.7 Supplementary Information - Assessment questions, data availability, data reliability and biological value scores 

 

Table S.1 – Algorithms used in the R script for the assessment questions, data availability, data reliability and biological value scores (adapted from Eede et al 2014). 

 

Assessment question  
Valuation 

criteria 
Ecosystem 

components 
Algorithm 

Q1: Is the subzone 
characterized by high 

counts of many species?  

Aggregation/ 
fitness 

consequences ¹ 

macrobenthos 
birds 

demersal fish 
marine 

mammals   
(All 

components) 

Determine the species which are regularly occurring in your study area, selecting all the species which 
occur in more than 5 % of your records 

The average density  was calculated per grid cell (subzone) for every regularly occurring species 

Create 5 density classes with values between 1 and 5 (per species) 

Assign values to data for all species and sum the values in every grid cell 

Divide the resulting summed values again in 5 classes (based on the range of the values) 

Q2: Is the abundance of 
certain species very high 

in the subzone? 

Aggregation/ 
fitness 

consequences ¹ 

All 
components 

Determine the species which are regularly occurring in your study area by selecting all species which 
occur in more than 5 % of the subzones 

Determine the mean density of every species for the whole study area (=X) 

Calculate the mean density of every species for every subzone (=Xi) 

Calculate the ratio Xi/X for every species in each subzone 

Determine the 5 % subzones with the highest ratio. Calculate the percentage of the density of every 
species that occurs in the 5 % most important subzones (=Y) 

Determine in how many subzones every species occurs (=Z) 

Calculate the ratio Y/Z which is the aggregation coefficient for each species 

Multiply the ratio Y/Z with the ratio Xi/X and divide these values in 5 classes with values between 1 and 
5 

Q3 and Q4: Is the 
presence/abundance of 
rare species very high in 

the subzone?  

Rarity ² 
All 

components 

 
 

Determine the species which occur in less than 5% of your subzones (rare species). 

Interpolate presence or density data of species to the chosen subzones 

Create 5 presence or density classes with values between 1 and 5 (with an equal amount of subzones 
in each class) 

Assign values to data for all species and sum the values in every subzone 

Divide the resulting summed values again in 5 classes 
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Q5: Is the abundance of 
ecologically significant 

species (ESS) high in the 
subzone? 

Rarity ² 
All 

components 

Select ESS from species list  

Create 5 density classes for these species with values ranging from 1 to 5. Class 1 holds subzones 
without any ESS 

If there are several ESS present in the subzone, create a different density class for each species 
separately and average the values afterwards 

Q6: Is the species richness 
(SR) in the subzone high? 

Aggregation/ 
fitness 

consequences ¹ 

All 
components 

Determine the average SR for each subzone 

Create 5 classes for SR ranging from 1 to 5 

Q7: Is the abundance of 
habitat-forming species 

(HFS) high in the 
subzone? 

Rarity ² macrobentos  

Select HFS from species list  

Create 5 density classes for these species with values ranging from 1 to 5 (with an equal amount of 
subzones in each class). Class 1 holds subzones without any HFS 

If there are several HFS present in the study area, then create a different density class for each species 
separately and average the values afterwards 

Data Availability (DAV) 

   
All 

components 

Determined by the number of samples (/observations) of each ecosystem component taken (/made) in 
each subzone. It is calculated for each ecosystem component and for all components together  1 = Low 
(L), 2 = Medium (M), 3 = High (H)  

Data Reliability (REL) 

  

All 
components 

Based on the number of assessment questions that could be answered for each subzone in relation to 
the maximum amount of questions answered (number of questions answered per 
subzone)/(maximum number of questions answered). It is calculated for each ecosystem component 
and for all components together. 1 = Low (L), 2 = Medium (M), 3 = High (H)  

Biological Value (BV)    

  

All 
components 

The biological value for each ecosystem component was determined by averaging the values for the 
different assessment questions. For the total BV, the individual BV available in each grid cell was 
averaged. Total BV  1 = Very Low (VL), 2 = Low (L),3 = Medium (M), 4 = High (H), 5 = Very High (VH) 

 
Aggregation/ fitness consequences ¹ - Degree to which an area is a site where most individuals of a species are aggregated for some part of the year or a site which 
most individuals use for some important function in their life history or a site where some structural property or ecological process occurs with exceptionally high 
density / Degree to which an area is a site making a vital contribution to the fitness (=increased survival or reproduction) of the population or species present. DFO 
(2004) Rarity ² -  Degree to which an area is characterized by unique, rare or distinct features (landscapes/habitats/communities/species/ecological functions/ 
geomorphological and/or hydrological characteristics) for which no alternatives exist.   IUCN (1994), UNEP (2000),  OSPAR (2003), DFO (2004) 
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5.8 Supplementary Information 1 - Natura 2000 Network sites in continental Portugal 

 

Figure S.1 A –Special Protection Areas (SPAs) B – Designated and proposed Sites of Community Importance (SCIs) (available at http://www.icnf.pt/). 
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Q1:Is the subzone 
characterized by high 
counts of many species?

Q2: Is the 
abundance of 
certain species very 
high in the subzone?

Q3: Is the subzone 
characterized by the 
presence of many rare 
species?

Q4: Is the abundance of rare 
species high in the subzone?

Q6: Is the species 
richness in the subzone 
high?

Q5: Is the abundance 
of ecologically 
significant species 
high in the subzone?

Data availability Data reliability

5.9 Supplementary Information – Results for the birds’ component. 
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Q1:Is the subzone 
characterized by high 
counts of many species?

Q2: Is the 
abundance of 
certain species very 
high in the subzone?

Q3: Is the subzone 
characterized by the 
presence of many rare 
species?

Q4: Is the abundance of rare 
species high in the subzone?

Q6: Is the species 
richness in the subzone 
high?

Q5: Is the abundance 
of ecologically 
significant species 
high in the subzone?

Data availability Data reliability

5.10 Supplementary Information – Results for the demersal fish component. 
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Q1:Is the subzone 
characterized by high 
counts of many species?

Q2: Is the 
abundance of 
certain species very 
high in the subzone?

Q3: Is the subzone 
characterized by the 
presence of many rare 
species?

Q4: Is the abundance of rare 
species high in the subzone?

Q6: Is the species 
richness in the subzone 
high?

Q5: Is the abundance 
of ecologically 
significant species 
high in the subzone?

Data availability Data reliability

Q5: Is the abundance 
of habitat-forming 
species high in the 
subzone?

5.11 Supplementary Information - Results for the macrobenthos component. 
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Q1:Is the subzone 
characterized by high 
counts of many species?

Q2: Is the 
abundance of 
certain species very 
high in the subzone?

Q3: Is the subzone 
characterized by the 
presence of many rare 
species?

Q4: Is the abundance of rare 
species high in the subzone?

Q6: Is the species 
richness in the subzone 
high?

Q5: Is the abundance 
of ecologically 
significant species 
high in the subzone?

Data availability Data reliability

 
5.12 Supplementary Information - Results for the marine mammals and turtles component. 
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6.1 General Discussion 

 

 Portugal has committed to establish an ecologically coherent network of MPAs under 

several international agreements and national laws. Achieving ecological coherence is a 

complex task, and requires multiple approaches to analyse not only the location, size and 

spacing of protected sites already designated under the national government, but also 

inferring about new sites to enhance network effects. This process is complicated because 

individual MPAs have been set up with different goals, and under different monitoring, 

management and enforcement strategies.  

 Given the international deadline for the establishment of ecologically coherent 

networks of MPAs by 2020, the purpose of this thesis was to assist, promote and support this 

assessment along the Portuguese continental waters. Specific objectives included the 

development and application of different empirical methods focusing on important recognized 

criteria used to quantify ecological coherence: connectivity and representativity. Maintaining 

ecologically connected and representative networks of MPAs are two key conservation 

objectives to achieve biodiversity persistence (Margules and Pressey, 2000). A very recent 

study in the Mediterranean Sea provided evidence that biodiversity persistence is enhanced 

through achieving objectives for both representation and connectivity, in a multispecies 

context (Almeida Magris et al., 2018). 

 In this sense, the integrative quantitative approach developed in this thesis, combining 

connectivity and biological value assessments, will hopefully contribute to the development of 

more effective reserve networks for the persistence of biodiversity at a national scale. In 

addition, and as it is often the case at the end of a dissertation, it draws attention to several 

unanswered questions and emphasizes the need for a national strategy to set science-based 

targets to maximize and enhance conservation planning. 

 Chapter I highlighted the international pressure and progress in setting up coherent 

networks of MPAs so as to protect the structures and functions of marine systems, and 

promote economic and social benefits in an integrative manner. It specifically addressed how 

conservation planning, which is the base for the development of the networks, should be 

established in accordance with recognized biodiversity patterns and functions (Pressey 2004). 

It also showed that the criteria used to assess ecological coherence is consistent at the 

European level and comprehensively described in the literature. Even though a common set of 

criteria was proposed at the European level, in practice the targets may differ according to the 

scale of the assessment and the local environmental, socio-economic and political settings. 



Chapter VI 
 
 

234 
 

Threshold levels for an objective evaluation of coherence in a network of MPAs are yet to be 

set in Portugal. In this way, this thesis presents quantitative-based estimates on connectivity 

and representativity, and hopes to stimulate discussion among Portuguese scientists, 

stakeholders and managers on the design and monitoring of a national network of MPAs. This 

is indeed a very complex subject and there are few examples of studies which actually evaluate 

MPA networks coherence as a whole, considering all the settled criteria, and importantly, none 

of them rated an MPA network as coherent.  

 Regarding the Portuguese case, most marine protected areas implemented in 

mainland Portugal are limited to coastal waters, many of these as small extensions of 

terrestrial protected areas (fig. 1.3, Chapter I). The majority was created in the 70’s and 80’s 

(and reclassified afterwards), through ad hoc actions addressing local and regional-scale goals, 

and responding to local opportunities and restrictions. They have traditionally stemmed from 

aesthetic or species richness perspectives to protect particular landscapes/ecosystems, and 

influenced by limited conservation plans and strategies to minimize socio-economic costs. In 

this regard, no “systematic planning” or network effects were considered in the overall MPAs’ 

design and spacing. These areas contain, however, comprehensible management plans which 

account for their conservation objectives, which generally include the protection of habitats, 

species, cultural values and sustainable management of artisanal fisheries and economic 

activities. The average individual size of these classified areas is around 50 km², ranging from 

2.6 km² to 290 km². However, fully protected areas (no-take zones) cover only 4.32 km² in 

Arrábida and 0.63 km² at Costa Sudoeste.  

 On the other hand, Natura 2000 sites in mainland Portugal have been created from 

around the year 2000 on, and have to comply with European Directives to create a network of 

sites to ensure the long-term survival of Europe's most valuable and threatened species and 

habitats. Therefore, Natura 2000 is different from the previously described national protected 

areas in the sense that all sites should be chosen according to scientific criteria to warrant the 

favourable conservation status under the entire European network.  

 The first result which stands out looking at the current MPA coverage (considering 

both national classified sites and Natura 2000 sites) in the Portuguese coastal and ocean 

waters is the increasing rate of protected area coverage. This is mainly because of the 

designation, in 2015, of the Aveiro/Nazaré and Cabo Raso SPAs, as well as Banco Gorringe SCI. 

Currently, MPAs coverage represents 9.22% of the total Exclusive Economic Zone (EEZ) area of 

mainland Portugal (Fig. 1.4, Chapter I), which is close to the 10% ambitious targets agreed by 

signatory states of the Convention on Biological Diversity (CBD 2010, Aichi target 11). 
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Nevertheless, it is notorious the low percentage of strictly no-take zones, representing merely 

0.0015% of the EEZ. No-take areas have been reported to be the most effective management 

tool in restoring and preserving biodiversity, and in enhancing ecosystem resilience (Sala and 

Giakoumi 2017). Also, the full protection coverage is mainly driven by a single MPA (Banco 

Gorringe Natura 2000 site of Community Importance). This MPA alone covers 22 887.82 km², 

almost three times more than all other MPAs summed together.  

 Most of the management plans for the Natura 2000 sites in mainland Portugal are still 

under discussion and await the approval by competent national authorities. It is important to 

keep in mind that Natura 2000 sites are designed and managed to provide protection for the 

selected habitats or species only, and do not warrant protection for the full array of 

biodiversity or territory. ICNF proposal for management guidelines suggests wide-ranging 

measures to "minimize the disturbance, damage, destruction or removal of marine organisms 

and / or parts of habitat; prevent the release of harmful substances on site, regulate 

recreational and commercial fisheries; ensuring good environmental status of the site; 

condition the passage of ships in transit; regulate underwater tourism and encourage and 

support scientific research.” So, rather than just looking to the overall protection percentage 

area, these guidelines need to turn into comprehensive and objective measures to guarantee 

that designated areas provide efficient protection on the ground. Nonetheless, despite 

recognized shortfalls in management implementation, the fact that these areas are already 

designated is a step forward to promote further improvement in protection. It is also crucial 

that management plans include key performance indicators covering not only environmental 

issues but also social and economic factors, which can considerably affect MPA performance as 

a protection tool (Charles and Wilson, 2008). In a recent study assessing management 

performance of MPAs in four countries in Northwest Europe, Portuguese MPAs showed a 

higher number of objectives and lower rates of objective achievement (Álvarez-Fernández et 

al. 2017). 

 So, the first real challenge dealing with an objective assessment of the ecological 

coherence of the continental Portuguese MPAs network has to do with this discrepancy in 

protected area designations, scale, objectives, and management and protection levels.  

 Chapter II proved that the model species M. galloprovincialis larval shell geochemistry 

is able to provide crucial information as a natal tag at an ecologically relevant spatial scale. The 

results showed that, during the period of the study, Arrábida MPA was the main source 

population supplying larvae to the other two regions, even though connectivity with Berlengas 

MPA was very limited. Also, that Arrábida MPA revealed high levels of self-recruitment within 
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its bay, suggesting a retention zone for locally spawned larvae. Importantly, the dispersal 

distance for most of the recruits analysed was estimated to be less than 50 km away from the 

natal source.  

 Characterizing the extent of connectivity among marine populations and the factors 

influencing this exchange is fundamental to understand coastal species population dynamics 

(Cowen et al. 2006). Although this work has focused on a single-species measurement of 

connectivity, it nevertheless helped to identify the magnitude of larval dispersal within the 

study region for an important ecosystem engineer component of rocky intertidal habitats, 

which shares several life-cycle traits with many coastal marine species. The rate of successful 

exchange of individuals within local populations of marine organisms drives population 

replenishment with repercussion for population dynamics. Therefore, realistic estimates of 

connectivity are crucial in spatial resource management to define the best size and range of 

reserve spacing (Botsford et al. 2001, Palumbi, 2003). Here, the results suggest that protected 

sites should be placed within around 50 km from each other to maximize benefits for mytilid 

marine larvae with potential large-scale dispersal among rocky intertidal areas.  

 Mytilid larvae have been described as a potentially long-dispersing species, with 

estimated dispersal distances reaching 100s of kilometres (Bayne, 1976). Although McQuaid 

and Phillips (2000) reported that the majority of recruits of Mytilus galloprovincialis in South 

Africa settled <5 km from the parent population, other studies (Gilg and Hilbish 2003, Kinlan 

and Gaines 2003, Becker et al. 2007, Smith et al. 2009, López-Duarte et al. 2012) also 

documented moderate dispersal distances (20–40 km) among open coast mussel populations. 

Chapter II’s results are also within the range of other targets set for MPA spacing within 

networks: Shanks et al. (2003) recommend a spacing of 10 to 20 km for species with typical 

pelagic larval durations, McLeod et al. (2009) proposed a general 15 to 20 km distance 

threshold between MPAs and Gaines et al. (2010) recommend 10 to 100 km distance. At a 

wider scale, the OSPAR Commission (OSPAR, 2007) recommends that spacing between 

nearshore MPAs should be less than 250 km and HELCOM (HELCOM 2010) advises that 50 % of 

protected sites within the network should have more than 10 connections at 20 or 50 km 

distance. Finally, IUCN-WCPA (2008) suggests a spacing of around 10 to 20 km, up to 50 to 100 

km between individual MPAs and recommends variable spacing, as opposed to even spacing.  

Although Chapter II was able to provide a detailed connectivity matrix, with mean dispersal 

directions and distances, it only represented a momentary and potentially transitory atlas of 

geochemical fingerprints. It illustrates a “snapshot” assessment of the local physical, chemical 

and oceanographic characteristics between June and July 2013, representing only one possible 
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dispersal scenario and, as a consequence, the results cannot be extrapolated to other areas or 

different seasons. Therefore, an analysis of larval dispersal at a broader temporal and spatial 

scale is needed, if we are to set management strategies related with MPA spacing at a national 

scale. However, it is impossible to empirically measure the full range of spatial and temporal 

variability in larval dispersal for the whole area. Thus, predicting dispersal at greater scales and 

for multiple species and spawning sites is only feasible with the use of high resolution 

numerical models of ocean circulation coupled with biological parameters. 

This way, empiric connectivity estimates, such as the results of Chapter II, can support these 

models by fine-tuning and validation analysis, together with realistic estimates of species 

abundance and fertility along the study area.   

 Chapter III described the use of low altitude and high-resolution drone imagery, 3D 

surface models and ground-based observations as a powerful tool for surveying intertidal 

ecosystems. In monitoring intertidal areas, one of the major challenges concerns the spatial 

extent for which data needs to be collected, and the logistical constraints of broad scale 

ground surveys of small organisms existing in high densities. Adding to this, there are time 

constraints given the limited low tide interval. Aerial high resolution photographic surveys 

provided a fast assessment covering an ecological relevant spatial area, while presenting 

sufficient taxonomic resolution to capture fine-scale biotic features such as mussel beds. 

Importantly, this work was crucial to identify limitations concerning spectral characteristics, 

atmospheric conditions and resolution requisites.  

 Aerial images allowed for 3D investigation of the rocky substrate and determination of 

mussel coverage. The integration of the information of ground quadrat surveys allowed for an 

estimation of mussel density and mean size. The results also highlighted the relevance of wave 

exposure on the density and size distribution of mussel’s populations along the Portuguese 

coast, especially during winter times. Higher mussel densities (nº individuals/m² rock) were 

found at intermediate winter wave exposure levels, while smaller mussels were found at 

higher levels. Finally, these demographic parameters allowed the calculation of the 

reproductive output of the mussel population in the study area. Reproductive output has been 

described as key information to understand the persistence of spatially-structured populations 

within heterogeneous and patchy habitats (e.g. Treml and Halpin 2012, Burgess et al. 

2014).This way, our location-specific predictions can be used in metapopulation models 

dealing with the management of pivotal conservation areas.  

 Given the time and logistics constraints, the protocol developed here proved to be a 

very good option to obtain mussel density, size and reproductive output estimates to 
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incorporate in the subsequent chapter. Nowadays, drone technology has the potential to 

modernize environmental science, providing adequate spatial or temporal resolution for 

ecology studies at a relatively low cost (Anderson and Gaston 2013). The complete workflow, 

from flight planning, data acquisition, image processing and classification, and extrapolation, is 

described, so as to lay the groundwork for future routine applications in intertidal surveys. Our 

final predictive models of mussel abundance, size and reproductive output can provide 

important information to meet practical management and forecasting needs. 

 Chapter IV used the connectivity estimates of Chapter II to validate a biophysical 

model which included different population and larval biology scenarios as well as realistic 

assessments of mussel reproductive outputs calculated in Chapter III. Larval dispersal drivers 

are intrinsically a biophysical issue, given the interaction at various scales of physical processes 

(advection and diffusion properties of water circulation) and biological factors, such as 

reproductive output, growth, development, behaviour and mortality. 

 In this study, after testing the predictions from the biophysical model against the 

empirical data, there was a high level of convergence between the two independent estimates 

of larval dispersal at spatial scales below 40 km. Notably, this chapter explored the effect of 

accounting for uncertainty to improve cross-validation of independent estimates of marine 

population connectivity. The biophysical model developed here described larvae trajectory in 

the central Portuguese west coast with very high certainty, and therefore it is expected to 

accurately predict mussel larvae dispersal in the remaining western Iberian margin. This opens 

the door to effectively conjugate the two techniques to describe a wider range of biological 

models and investigate demographic processes with promising applications in MPA 

management strategies.  

 The utilization of high-resolution biophysical models to study connectivity presents an 

obvious advantage over direct methods since it allows tracking of numerous virtual individuals 

with different life-traits, and over long spatial and temporal scales (Treml et al. 2008). In this 

way, its outcomes are capable of illustrating the environmental variability crucial for robust 

selection of MPA networks (Cowen et al. 2006, Steneck et al. 2009, Katsanevakis et al. 2011).  

If adapted to the species of interest, these estimates can help inform conservation priorities at 

different scales (Beger et al. 2010). Single or multiple species biophysical modelling of 

connectivity has already been used for marine-reserve optimization design in various habitats; 

e.g. in the Baltic Sea (Berglund et al. 2012), Mediterranean Sea (Andrello et al. 2013), Adriatic 

Sea (Bray et al. 2017), coastal British Columbia (D’Aloia et al. 2017), Indo-Pacific coral triangle 

(Treml and Halpin, 2012), Tropical Pacific reefs (Treml et al. 2008) and the Great Barrier Reef 
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(Thomas et al. 2014). Recently, Krueck et al. (2017) used biophysical models to present a novel 

approach to MPA design which promotes both population persistence and ensures effective 

fisheries recovery. Finally, biophysical models might help in anticipating how continental 

boundary currents are likely to change connectivity among a network of MPAs under future 

scenarios of climate change (Coleman et al. 2017). 

 Lastly, in Chapter V, biodiversity was valued along the Portuguese continental shelf 

using an ecological approach based on the intrinsic value incorporated in biodiversity per se, 

regardless of any human association. This approach was used as a means to assess 

representativity, and considered the extent to which areas of high biological value were 

contained in the Natura 2000 network area. MPAs containing a good representation of 

community types and habitats, within well-connected networks should promote healthy 

ecological processes and support the persistence and resilience of ecosystems (Roberts et al. 

2003). 

 Here, the marine biological valuation (MBV) protocol attributed a global value to 

biodiversity using a wide taxonomic range of ecosystem components (seabirds, demersal fish, 

cephalopods, crustaceans, macrobenthos, marine mammals and sea turtles) and several 

indicators: species richness and composition, species rareness and presence of ecological 

important species. The results showed four main hotspots of high biological value, which 

mostly overlapped with previously identified valuable areas for protection (Natura 2000 sites), 

particularly in the northern and central regions. However, there was a clear mismatch between 

high value areas, and low level of protection along the coast of the Algarve. This type of 

analysis can be used to assist the expansion of new protected areas and/or develop spatial 

prioritization measures by drawing attention to subzones of biological importance. This 

biological value hotspot analysis was, however, dominated by the patterns describing the bird 

component. These long-lived marine predators can and have been used as biological indicators 

and sentinels to prioritize conservation efforts, given their wide range and overlapping 

distribution with other biological communities and anthropogenic stressors (e.g. Maxwell and 

Morgan, 2013). 

 In the context of ecological coherence, representativeness is usually assessed using 

targets measuring biogeographic regions and major habitats, as surrogates for biological 

features (e.g. OSPAR 2007). The rationale behind this approach is that species diversity 

generally increases with habitat diversity, thus, as more habitats are protected, more 

biodiversity is likely to be protected. Other surrogates include depth, distance to shore, seabed 

substrates, primary productivity and thermal fronts. 
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 However, at a finer-scale study such as this one, incorporating data directly on 

biodiversity distribution and abundance presents a more feasible approach for the assessment 

of representativeness of biodiversity features. Nonetheless, caution is needed when 

interpreting relative biological value since such estimates are highly dependent on the 

quantity, quality, type of assessment questions selected and resolution of the biological 

distribution and abundance data. Therefore, it is also important to describe data reliability. 

Also, insuring representativeness of ecosystem features does not directly indicate their 

protection or promote their persistence (Pressey et al. 2015). In the end, and although most of 

the hotspot areas identified here already fall within the boundaries of Natura 2000 sites 

(except in the southern region), protection of the full array of ecosystem components might 

not be secured, since these sites were selected and will be managed based on a particular 

species - habitat Natura 2000 criteria.  

 

In a nutshell, the main outcomes of this thesis are resumed in the table 6.1. 
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Table 6.1 Overview of thesis’s main outcomes and recommendations. 

 

Criteria Method Study Area Target Feature Results Recomendations 

Adequacy 
(Chapter I) 

Spatial coverage 

Exclusive 
Economic Zone 
of mainland 
Portugal 

MPA network area 
coverage 

Current MPA coverage represents 9.22% of 
the EEZ of mainland Portugal; while no-take 
areas cover only 0.0015% of EEZ  

Approve and implement 
comprehensive management 
plans including key 
performance and 
management indicators 

Connectivity              
(Chapter II) 

Trace elemental 
fingerprinting of the 
microchemistry of 
bivalve larval shells  

Central 
Portuguese west 
coast 

Rocky intertidal 
ecosystems and 
mussel reef 
populations as a 
model species with 
medium to large 
dispersal potential 

Arrábida MPA was an important source 
population and showed high rates of self-
recruitment but limited connectivity to the 
Berlengas MPA. Average dispersal distance 
was estimated to be less than 50 km away 
from the natal source, but reached more than 
100 km in some cases 

For species with PLDs of 3-4 
weeks, spacing amongst 
rocky shore protected areas 
should range between 50-
100 km 

Connectivity                 
(chapter III; IV) 

Low-altitude and high 
resolution aerial 
photographic surveys; 
Numerical biophysical 
model of mytilid larval 
dispersal - Regional 
Ocean Modelling System 
(ROMS) + Lagrangian 
biological model 

Central 
Portuguese west 
coast; Western 
Iberian margin 

Demographic mussel  
estimates in rocky 
reefs; Broad scale 
mussel larvae 
dispersal  

Winter wave exposure was significant in 
shaping mussel density, size and consequently, 
reproductive output.  
The predictions from the biophysical model 
were tested against the empirical data, with 
high level of convergence between the two 
independent estimates of larval dispersal at 
spatial scales below 40 km in the central 
Portuguese west coast  

Develop a spatially explicit 
metapopulation model to 
investigate effectiveness of 
the network for persistence 
of mobile species  

Representativity 
(Chapter V) 

Marine biological 
valuation and hotspot 
approach 

Portuguese 
continental shelf 
waters 

Biodiversity 
components 
(Marine birds, 
marine mammals, 
macrobenthos, 
demersal fish) 

Four main hotspots of high biological value 
were identified, and mostly fall within current 
and proposed Natura 2000 sites except in the 
southern region 

Expand protection zone in 
the southern Portuguese 
continental shelf area 
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6.2 Future directions and final remarks 

 

 Regarding the Connectivity component, and even though a great extent of critical 

work has been done investigating this section, no broad scale assessment of connectivity 

within the full network of MPAs has been completed. The development of 3-D biophysical 

hydrodynamic model required substantial time and associated costs for its development, 

calibration and validation, fundamental before running any simulations. In this sense, it will be 

crucial to use this calibrated model in the future to investigate seasonality, annual variation, 

and periodicity. It offers a powerful instrument to explore connectivity that can be expanded 

to the scale of the Iberia Peninsula and adjacent systems and test important scenarios of 

persistence of spatial-structured metapopulations within the network. The regulation and 

persistence of marine metapopulations in a network of MPAs depends on self-persistence 

(whether individuals reproduce enough in their lifetime to replace themselves locally) and on 

network persistence (loops of connectivity among local populations in the network) (Botsford 

et al. 2001, Hastings and Botsford, 2006, White et al. 2010). Understanding the demographic 

connections between local populations will be essential to prioritise sectors of the coast to be 

protected and promote the persistence of metapopulations, support their recovery from 

disturbance and grant benefits for both conservation and fisheries management (Guichard et 

al. 2004, Almany et al. 2009, Green et al. 2014). As an example, Jones et al. (2007) advocated 

prioritizing the protection of spawning aggregation sites, isolated sites and source populations, 

for the persistence of coral reef metapopulations.  

 On the topic of Marine Biological Valuation, the protocol should be discussed 

amongst environmental researchers, stakeholders and policy makers for future refinement in 

the choice of assessment questions. It should also be improved with up-to-date information on 

the national distribution and abundance of marine organisms and habitats and include spatial 

data on the distribution and abundance of other important marine ecosystem components, 

such as pelagic fish, phytoplankton and zooplankton, and functional relationships. Finally, the 

method should be applied at a smaller spatial scale, including different habitats, such as 

transitional waters, seagrass and kelp beds, saltmarshes, rocky and sandy shores to improve 

the valuation at the intertidal and shallow subtidal coastal zones. 

 In general terms, and with reference to future broad assessments of ecological 

coherence in Portuguese MPAs, the first and most important (and probably the most difficult) 

task will be to agree on scientific-grounded threshold levels for the criteria underpinning 

ecological coherence. Consequently, targets should be set for the general criteria of 
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connectivity, adequacy, representativeness and replication, and adapted to the scale of the 

assessment.  

 Ultimately, these targets should reflect exhaustive meteorological, oceanographic and 

biological research for adequate MPA network design, location, size and spacing (Green et al. 

2014). Also, they should take into consideration the human dimension (socio-economic 

setting) so that knowledge can be directly linked to action (Fox et al. 2012). 

It is, therefore, a complex and multidisciplinary task due to the complex networks of 

biotic/abiotic interactions, and socio-economic factors, which define marine socio-ecological 

systems. Moreover, there are still a number of scientific knowledge gaps and logistical 

constrains, mainly driven by: 

 The lack of broad scale available datasets at a national level on biodiversity and 

habitats, anthropogenic stressors and threatened features. In many areas, biological 

and geological sampling coverage is often spatially inconsistent and temporally 

unrepresentative, yielding unsatisfactory information in terms of species distribution 

and abundance or habitat continuity.   

 The need of improved information on comprehensible management plans and 

protection levels across MPAs.  

 The need to address transboundary issues, local socio-economic settings and the 

accessibility of incentives to plan, manage, monitor and finance those areas.  

 

 Even so, the complexity and the lack of complete information should not hinder our 

attempt to deal and resolve environmental and socio-economic problems at sea (Tallis and 

Lubchenco, 2014). The prompt development of technology and computational abilities, and 

emergent data availability, mainly on GIS records on the spatial distribution of conservation 

features, species, habitats and anthropogenic pressures, is likely to improve management 

initiatives backed by sound scientific evidence.  

 This way, the best available scientific information should be used to discuss and define 

measurable targets for an objective evaluation of the current network performance and for 

the development of competent expansion and management plans. Table 6.2 resumes future 

research needs and required threshold levels for the assessment of ecological coherence of 

networks of MPAs at a national level, based on the work developed in this thesis and the 

experiences described for other European seas.  
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Table 6.2 – Future research needs concerning threshold levels for the assessment of ecological 

coherence of networks of MPAs at a national level. 

 

Criteria Rationale Targets to be set at a national level: 

Adequacy  

Safeguard the ecological 
viability and integrity of 
marine species and 
communities by 
protecting sufficient 
proportion of features to 
secure their long-term 
persistence and resilience 

  

-  Total area to be protected within the network 

 - Optimal size ranges for individual MPAs 

 - Spacing between adjacent MPAs within the network 

 - Minimum size for no-take zones 

 - Implement adequate management plans including key 
performance indicators. 

 - Secure accessibility of incentives to enforce, monitor 
and finance protected areas 

Connectivity               

Guarantee MPA spacing 
within the network which 
allows for sufficient 
exchange of propagules 
(eggs, larvae, recruits, 
juveniles or adults) at the 
species’ range 

  
-  Measures of dispersal distances for representative 
species 

 - Optimal size ranges for individual MPAs 

 - Optimal spacing between adjacent MPAs within the 
network 

 - Optimal distance between seascape patches (habitat 
continuity) and areas of ecological importance  
(spawning, nursery, feeding) 

Representativity  

Include the full range of 
ecosystems, habitats 
and the biotic diversity, 
ecological processes and 
environmental gradients 
within the network 

 

- Species lists assemblage for Portuguese marine fauna  
and flora 
 

 - % cover of marine subregions and/seascapes 

 - % cover of EUNIS level 3 habitats 

 - % cover of depth zones 

 - % cover of threatened and/or rare habitats and 
species 

 - % cover of areas of high biological value 

Replication 

Protect a sufficient 
number of species and 
habitats to safeguard 
ecological processes 
within the network and 
protected them from 
risks affecting individual 
MPAs 

 - minimum number of replicates for selected seascapes  

 - minimum number of replicates for benthic marine 
habitats 

 - minimum number of replicates for vulnerable/rare 
habitats and species 
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